0000000000983847

AUTHOR

Stefano Piccarolo

showing 107 related works from this author

Physical Cross Links in Amorphous PET, Influence of Cooling Rate and Ageing

2003

A Continuous Cooling Transformation (CCT) procedure can be used to distinguish the initial “state” of the amorphous PET samples produced upon solidification from the melt at different cooling rates. The material frozen at this stage behaves as a rubber when brought above the Tg due to the onset of physical cross links. The rubber is not a stable network, however, since physical cross links may eventually dissolve. Their size distribution, and possibly their number, depend on cooling rate and ageing. Some may be even stable above the glass transition and act as nuclei for further crystallization from the glass. Upon increasing cooling rate, size distribution becomes smaller and stability of …

Materials scienceContinuous cooling transformationStability (probability)Amorphous solidlaw.inventionCooling rateNatural rubberAgeinglawvisual_artvisual_art.visual_art_mediumComposite materialCrystallizationGlass transition
researchProduct

Polymeric scaffolds prepared via Thermally Induced Phase Separation (TIPS): Tuning of structure and morphology

2007

Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes dur…

chemistry.chemical_classificationInterconnectionMaterials scienceMorphology (linguistics)NucleationPolymerResidence time (fluid dynamics)CrystallographyNatural rubberchemistryChemical engineeringvisual_artMetastabilityvisual_art.visual_art_mediumTernary operation
researchProduct

Effect of some injection molding processing conditions on weld lines characteristics

1988

The influence of injection and mold temperature as well as holding time on the knit-line characteristics in samples of Nylon 6 obtained by injection molding was analysed. The characteristics of the surface defect seem to be governed by the shrinkage rate and amount in the weld line zone.

Materials scienceWeld lineMolding (process)WeldingShrinkage ratemedicine.disease_causelaw.inventionchemistry.chemical_compoundNylon 6chemistrylawMoldmedicineComposite materialThermoplastic polymerHolding time
researchProduct

PET/PEN Blends of Industrial Interest as Barrier Materials. Part I. Many-Scale Molecular Modeling of PET/PEN Blends

2006

Mesoscale molecular simulations, based on parameters obtained through atomistic molecular dynamics and Monte Carlo calculations, have been used for modeling and predicting the behavior of PET/PEN blends. Different simulations have been performed in order to study and compare pure homopolymer blends with blends characterized by the presence of PET/PEN block copolymers acting as compatibilizer. A many-scale molecular modeling strategy was devised to evaluate PET/PEN blend characteristics, simulate phase segregation in pure PET/PEN blends, and demonstrate the improvement of miscibility due to the presence of the transesterification reaction products. The behavior of distribution densities and …

Materials sciencePolymers and Plasticsmolecular modelingOrganic ChemistryMonte Carlo methodPET/PEN blends Many-scale molecular modeling Transesterification reactionThermal diffusivityblendMiscibilityMolecular dynamicsPETPENPhase (matter)Materials ChemistryCopolymerOrganic chemistryGaseous diffusionPolymer blendComposite material
researchProduct

PLLA biodegradable scaffolds for angiogenesis via Diffusion Induced Phase Separation (DIPS)

2008

A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. For this reason it is mandatory to manufacture an implantable structure where the process of vessel formation – the angiogenesis – can take place. In this work PLLA scaffolds for vascular tissue engineering were produced by dip-coating via Diffusion Induced Phase Separation (DIPS) technique. The scaffolds, with a vessel-like shape, were obtained by p…

ScaffoldMaterials scienceTissue EngineeringAngiogenesisDiffusionTissue engineeringChemical engineeringDistilled waterBiodegradable scaffoldGeneral Materials ScienceFiberLumen (unit)Biomedical engineering
researchProduct

The X-ray determination of the amounts of the phases in samples of isotactic poly(propylene) quenched from the melt at different cooling rates

1997

A new procedure for the determination of the amounts of phases in samples of isotactic poly(propylene) quenched at different cooling rates from the same melted polymer is described. According to the procedure, all the patterns corresponding to the same quenching series are simultaneously analyzed for the amounts of phases so that reliable phase fractions relative to the different samples of the series are achieved. The analysis of the results points out that for increasing cooling rates above 30°C/s a remarkable increase of the mesomorphic phase settles, mainly at the expense of the α-monoclinic one.

Quenchingchemistry.chemical_classificationMaterials sciencePolymers and PlasticsStereochemistryOrganic ChemistryAnalytical chemistryX-rayCooling ratesPolymerCondensed Matter PhysicschemistryPhase (matter)TacticityPolymer chemistryMaterials ChemistryPhysical and Theoretical Chemistry
researchProduct

Phenomenological approach to compare the crystallization kinetics of isotactic polypropylene and polyamide-6 under pressure

2001

Reliable experimental data for semicrystalline polymers crystallized under pressure are supplied on the basis of a model experiment in which drastic solidification conditions are applied. The influence of the pressure and cooling rate on some properties, such as the density and microhardness, and on the product morphology, as investigated with wide-angle X-ray scattering (WAXS), is stressed. Results for isotactic polypropylene (iPP) samples display a lower density and a lower microhardness with increasing pressure over a wide range of cooling rates (from 0.01 to 20 °C/s). Polyamide-6 (PA6) samples exhibit the opposite behavior, with the density and microhardness increasing at higher pressur…

Morphology (linguistics)Materials sciencePolymers and PlasticsThermodynamicsIndentation hardnessCrystallinityPhase (matter)TacticityPolymer chemistryMaterials ChemistryPressurePolyamides (PA6)Physical and Theoretical Chemistrychemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria ChimicaScatteringCooling rateSettore ING-IND/34 - Bioingegneria IndustrialePolymerCondensed Matter PhysicsKineticsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPolyamidePoly(propylene) (PP)Crystallization
researchProduct

Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter

2009

Complex materials exhibit a hierarchical structure where a gradient of features on nanometer scale is induced by the synthetic route eventually enhanced by the loading condition. The nanometer scale at which individual components arrange, determining their properties, is a current challenge of mechanical testing. In this work, a survey on nanoindentation is outlined based on the comparison of results obtained by Atomic Force Microscopy and Depth-Sensing Instruments and their combination. An Atomic Force Microscope equipped with a Force Transducer gives indeed the possibility to scan the sample surface in contact mode, thereby allowing one to choose a suitable position for the nanoindentatio…

Classical mechanicsMaterials scienceAcousticsWork (physics)Atomic force acoustic microscopyMechanical properties of carbon nanotubesNanoindentationPenetration depthElastic modulusViscoelasticityCharacterization (materials science)
researchProduct

Constant stretching rate experiments on low density polyethylene

1985

A simple apparatus for elongational test of molten polymers is presented. Its realiability is demonstrated by means of stress growth in constant stretching rate experiments and relaxation test on a low density polyethylene sample.

chemistry.chemical_classificationPolymers and PlasticsChemistryTesting equipmentRelaxation testGeneral ChemistryPolymerCondensed Matter PhysicsStress (mechanics)Low-density polyethyleneMolten statePolymer chemistryMaterials ChemistryComposite materialConstant (mathematics)Polymer Bulletin
researchProduct

Linking structure and nanomechanical properties via instrumented nanoindentations on well-defined and fine-tuned morphology poly(ethylene)

2009

Several poly(ethylene) samples with a broad range of morphologies were studied in this work using nanoindentations. The samples had degrees of crystallinity ranging from 30 to 100% while their Young's modulus ranged from few tens of MPa up to several GPa. Experimental conditions for the correct evaluation of Young's modulus were at first identified, choosing a suitable loading rate in order to minimize viscoelastic effects on the unloading. The force curves, i.e., plots of applied load vs. penetration depth, were then analyzed following two common procedures available in the literature. None of these procedures leads to satisfying results when compared to other experimental techniques. Howe…

Materials sciencePolymers and PlasticsOrganic ChemistryModulusPolyethyleneNanoindentationViscoelasticitychemistry.chemical_compoundCrystallinitychemistryPolymer chemistryMaterials ChemistryComposite materialWell-definedPenetration depthElastic modulusPolymer
researchProduct

Relating morphology to nanoscale mechanical properties: from crystalline to mesomorphic iPP

2005

Abstract A nanoindentation technique using an atomic force microscope (AFM) was applied to characterize the mechanical behaviour of several isotactic polypropylene (iPP) samples. The samples were solidified from the melt with a CCT (continuous cooling transformation) procedure spanning a wide range of cooling rates thanks to a fast quenching apparatus developed by the authors. The influence of instrumental parameters on the nanoscale mechanical properties (indentation depth, Young's modulus) shows that for modulus determination one has to rely on simpler methods of force curve analysis based on trace curve alone. Structure homogeneity up to the scale of macroscopic samples used to evaluate …

Materials sciencePolymers and PlasticsIndentationTacticityOrganic ChemistryHomogeneity (physics)Materials ChemistryModulusContinuous cooling transformationComposite materialNanoindentationElastic modulusNanoscopic scalePolymer
researchProduct

Mesophase formation in poly(propylene-ran-1-butene) by rapid cooling

2009

Abstract The effect of random insertion of low amount of 1-butene of less than about 11 mol% into the isotactic polypropylene chain on structure formation at non-isothermal crystallization at different rate of cooling was investigated by X-ray scattering, density measurements, and atomic force and polarizing optical microscopy. Emphasis is put on the evaluation of the condition of crystallization for replacement of lamellar crystals by mesomorphic nodules on increasing the cooling rate/supercooling. In the polypropylene homopolymer, mesophase formation occurs on cooling at rates larger about 150–200 K s −1 , while in case of poly(propylene- ran -1-butene) mesophase formation is observed on …

PolypropyleneMaterials sciencePolymers and PlasticsOrganic ChemistryMesophase1-Butenelaw.inventionchemistry.chemical_compoundSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlawTacticityPolymer chemistryMaterials ChemistryOrthorhombic crystal systemIsotactic polypropylene Poly(propylene-ran-1-butene) CrystallizationCrystallizationSupercoolingMonoclinic crystal system
researchProduct

Crystallization kinetics in relation to polymer processing

1993

Phase distribution of quenched samples has been determined by a deconvolution procedure of WAXS spectra in a wide range of cooling rates. The informations collected together with isothermal and DSC results provide a very wide set of data on the crystallization kinetics of polymers relevant which covers conditions encountered in most polymer processing operations. They have been compared with predictions of a non-isothermal crystallization model assuming two independent and parallel crystallization processes competing during solidification.

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsOrganic ChemistryThermodynamicsCooling ratesPolymerCondensed Matter PhysicsIsothermal processSpectral linelaw.inventionCrystallization kineticsCrystallographychemistrylawPhase (matter)Materials ChemistryDeconvolutionCrystallizationMakromolekulare Chemie. Macromolecular Symposia
researchProduct

Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene

2006

Abstract The morphology and thermodynamic stability of crystals of isotactic polypropylene (iPP) were analyzed as a function of the path of crystallization by atomic force microscopy (AFM) and differential scanning calorimetry (DSC). Samples were melt-crystallized at different rates of cooling using a “controlled rapid cooling technique”, and subsequently annealed at elevated temperature. Mesomorphic equi-axed domains with a size less than 20 nm were obtained by fast cooling from the melt at a rate larger about 100 K s−1. These domains stabilize on heating by growing in chain direction and cross-chain direction, to reach a maximum size of about 40–50 nm at a temperature of 433 K, with the q…

Materials scienceIsotactic polypropyleneCrystal morphologyCrystallizationPolymers and PlasticsAnnealing (metallurgy)Organic ChemistryRecrystallization (metallurgy)Thermodynamicslaw.inventionCrystallographyDifferential scanning calorimetrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiNanocrystallawTacticityMaterials ChemistryChemical stabilityCrystallizationMonoclinic crystal system
researchProduct

Study of the long-period changes in samples of isotactic poly(propylene) obtained by quenching from the melt and subsequent annealing at different te…

1997

The structural modifications induced in samples of isotactic poly(propylene) obtained by quenching from the melt at 100°C/s and subsequently annealed at 40, 60 and 80°C for different annealing times have been studied using simultaneous wide-angle and small-angle X-ray scattering at the synchrotron radiation source of DESY. The occurrance of two different long-period values is demonstrated. These values are related to the mesomorphic phase, existing in the starting quenched material, and to the α-monoclinic one, which settles during the annealing process, respectively.

QuenchingMaterials sciencePolymers and PlasticsAnnealing (metallurgy)ScatteringOrganic ChemistrySynchrotron Radiation SourceCondensed Matter PhysicsCondensed Matter::Materials ScienceTacticityLong periodPolymer chemistryMaterials ChemistryPhysical and Theoretical Chemistry
researchProduct

Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology

2008

Scaffolds suitable for tissue engineering applications like dermal reconstruction were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time, and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleat…

Materials sciencePolymersPolyestersBiomedical EngineeringNucleationBiocompatible MaterialsResidence time (fluid dynamics)DioxanesBiomaterialsMetastabilityMaterials TestingLactic Acidchemistry.chemical_classificationTissue EngineeringTemperatureMetals and AlloysWaterPolymerAmorphous solidPolyesterCrystallographyChemical engineeringchemistryCeramics and CompositesDegradation (geology)Ternary operationTissue engineering TIPS PLA Phase separation Morphology StructureJournal of Biomedical Materials Research Part A
researchProduct

Solidification of syndiotactic polystyrene by a continuous cooling transformation approach

2007

Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide-angle X-ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singular…

DiffractionMaterials sciencePolymers and PlasticsKineticsThermodynamicsCrystal structureContinuous cooling transformationCondensed Matter PhysicsIndentation hardnesslaw.inventionchemistry.chemical_compoundchemistrylawTacticityPolymer chemistryMaterials ChemistryPolystyrenePhysical and Theoretical ChemistryCrystallizationPolymer Crystallization Kinetics
researchProduct

On the packing–holding flow in the injection molding of thermoplastic polymers

1988

Injection molding tests were performed on a Ny66 resin. Data of mass entering the mold during the packing–holding stage as a function of filling flow rate and holding time are presented. The experimental results are discussed on the basis of a simple model of the packing–holding stage. Only a small part of density increase due to crystallization seams to be compensated by the packing–holding extra flow.

Materials sciencePolymers and PlasticsFlow (psychology)General ChemistryMolding (process)medicine.disease_causeSurfaces Coatings and FilmsVolumetric flow ratelaw.inventionlawMoldMaterials ChemistrymedicineComposite materialCrystallizationThermoplastic polymerHolding timeJournal of Applied Polymer Science
researchProduct

Analysis of the packing stage in injection molding of thermoplastic polymers

1988

Injection molding tests were performed on a Ny 66 resin. Data are presented on the mass entering the mold during the packing-holding stage as a function of filling flow rate and holding time. The experimental results are discussed on the basis of a simple model of the packing-holding stage. Only a small part of the density increase due to crystallization seems to be compensated by extra flow during the packing-holding stage.

Materials scienceFlow (psychology)Compression moldingMolding (process)medicine.disease_causelaw.inventionVolumetric flow ratelawMoldmedicineStage (hydrology)CrystallizationThermoplastic elastomerComposite material
researchProduct

On the Use of the Nanoindentation Unloading Curve to Measure the Young's Modulus of Polymers on a Nanometer Scale

2005

Summary: The nanoindentation test is a fundamental tool to assess the link between morphology and mechanical properties. The preliminary results of a more exhaustive study about the applicability to polymers of the most used procedure to determine elastic modulus by indentation are reported in this short communication. A departure of the experimental conditions from the theoretical assumptions and results that give rise to the Oliver and Pharr analysis is shown to occur under a wide range of experimental conditions, with applied loads and penetration depths covering several orders of magnitude and using different indenter geometries. Unloading curves with exponents significantly larger than…

chemistry.chemical_classificationMaterials sciencenanoindentationPolymers and Plasticsbusiness.industrypolymerOrganic ChemistryYoung's modulusPolymerNanoindentationAmorphous solidsymbols.namesakeContact mechanicsOpticschemistryelastic moduluIndentationMaterials Chemistrysymbolsmechanical propertieatomic force microscopy (AFM)NanometreComposite materialbusinessElastic modulusMacromolecular Rapid Communications
researchProduct

Surface Anisotropy in the Expansion Behavior of Laminated Quasi-Isotropic Composites

1984

Mesure a l'aide d'un extensometre des deformations thermiques superficielles de deux materiaux stratifies resine epoxy-fibre de graphite. Les resultats dependent de la direction de mesure, l'anisotropie superficielle associee est inversement proportionnelle aux dimensions de l'echantillon et proportionnelle au rapport d'anisotropie d'une lamelle isolee. Comparaison avec la theorie des stratifications

Surface (mathematics)Materials scienceMechanics of MaterialsMechanical Engineeringvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumThermal strainEpoxyComposite materialComposite laminatesAnisotropyJournal of Composite Materials
researchProduct

Preparation and properties of poly(L-lactic acid) scaffolds by thermally induced phase separation from a ternary polymer-solvent system

2004

Poly(L-lactic acid) (PLLA) foams for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofuran (THF) followed by double solvent exchange (water and ethyl alcohol) and drying. An extension to solidification from solution of a previously developed method for solidification from the melt was adopted. The technique is based on a continuous cooling transformation (CCT) approach, consisting in recording the thermal history experienced by rapidly cooled samples and then analyzing the resulting sample morphology. Different foams were produced by changing the relative amount of dioxane and THF in the starting solution while the amount of…

Ternary numeral systemMaterials scienceTissue EngineeringPolymers and PlasticsOrganic ChemistryPorosimetrylaw.inventionSolventCrystallinitychemistry.chemical_compoundchemistryChemical engineeringlawSpecific surface areaPolymer chemistryMaterials ChemistrySolvent effectsCrystallizationTetrahydrofuranPolymer International
researchProduct

Mechanical Characterization of Polymers on a Nanometer Scale through Nanoindentation. A Study on Pile-up and Viscoelasticity

2007

The analysis of nanoindentation force curves collected on polymers through the common Oliver and Pharr procedure does not lead to a correct evaluation of Young’s modulus. In particular, the estimated elastic modulus is several times larger than the correct one, thus compromising the possibility of a nanomechanical characterization of polymers. Pile-up or viscoelasticity is usually blamed for this failure, and a deep analysis of their influences is attempted in this work. Piling-up can be minimized by indenting on a true nanometer scale, i.e., at penetration depth smaller than 200 nm. On the other side, it is common knowledge that fast indentations minimize the effect of viscoelasticity. How…

INDENTATION EXPERIMENTSHARDNESSMaterials sciencePolymers and PlasticsTO-RUBBER TRANSITIONModulusNanotechnologyViscoelasticityInorganic ChemistryIndentationMaterials ChemistryLOADComposite materialPenetration depthTEMPERATUREElastic modulusELASTIC-MODULUSOrganic ChemistryNanoindentationCharacterization (materials science)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiContact mechanicsRELAXATIONSCRYSTALLIZATIONMETHODOLOGYBEHAVIORMacromolecules
researchProduct

The use of the indentation test for studying the solidification behaviour of different semicrystalline polymers during injection moulding

2005

Summary: An in-line method for monitoring the solid-ificationprocess during injection molding of semicrystallinepolymers (demonstrated previously in J. Appl. Polym. Sci.2003, 89, 3713) is based on a simple device, where anadditional ejector pin is pushed on the injection molded partatdifferenttimesduringthesolidificationphase.The‘inden-tation depth profile’, i.e., residual deformation as a functionoftime,wasobtainedandallowedtodeterminetheevolutionof the solidification front in the mold as a function of thecooling time. The present work shows the reliability andthe powerfulness of the aforementioned method for a largevariety of different semicrystalline polymers (PET, PBT,polyamide-6 PA6, isota…

chemistry.chemical_classificationWork (thermodynamics)Materials sciencePolymers and PlasticsGeneral Chemical EngineeringOrganic ChemistryMolding (process)InjectorPolymermedicine.disease_causelaw.inventionCrystallinitychemistrylawTacticityMoldIndentationMaterials ChemistrymedicineComposite material
researchProduct

Viscoelastic recovery behavior following Atomic Force Microscope nanoindentation of semi-crystalline poly(ethylene)

2007

The residual imprint left behind by the AFM nanoindentation of polymers has been seldom studied in the past. In this work, the evolution of indentations at room temperature performed on a semicrystalline poly- (ethylene) in a broad range of experimental conditions is presented. The study shows that the recovery after 24 h is substantial, although not complete. Moreover, the dynamics of the recovery process is not seen to depend on the magnitude of the applied load for the nanoindentation, but instead on the rate of the indentation used. This points out that viscoelastic processes are minimized when performing fast nanoindentations, while at low loading rates there seems to be a residual vis…

chemistry.chemical_classificationWork (thermodynamics)Materials sciencePolymers and PlasticsOrganic ChemistryBendingPolymerNanoindentationResidualViscoelasticityInorganic ChemistryCrystallinitychemistryIndentationMaterials ChemistryComposite material
researchProduct

The use of in-line quantitative analysis to follow polymer processing

2009

In this work it is presented three applications of real time analysis during extrusion process using an optical device developed by our research group, which applies the concepts of light extinction. Monitoring of polymer blends morphology takes place to infer data concerned to dispersed phase size and concentration. The detector also enables information about melting temperature of polymer during extrusion and the level of viscous heating, and the exfoliation step during processing of a polymer-clay nanocomposite.

polymer blend morphologychemistry.chemical_classificationWork (thermodynamics)Materials scienceNanocompositePolymers and PlasticsOrganic ChemistryDetectorPolymerCondensed Matter PhysicsExfoliation jointextrusionSettore ING-IND/22 - Scienza E Tecnologia Dei Materialichemistryin-line measurementviscous heatingPhase (matter)nanocompositesMaterials ChemistryExtrusionPolymer blendComposite material
researchProduct

Effect of pressure on the PVT behaviour of iPP as revealed by dilatometric measurements

2002

Isotactic Poly-propylene samples, previously prepared under known conditions of pressure and cooling rate by means of a special apparatus designed and set-up by the authors, were subjected to several isobaric runs at low cooling and heating rate in a confining fluid dilatometer (by GNOMIX). The effect of the previous thermo-mechanical histories and the effect of pressure in the dilatometry on specific volume of the samples was studied. Results show that the initial specific volume depends upon the previous thermo-mechanical histories, which however cancels out after the first heating run. Moreover the reported dilatometric experimental data support the evidence that an increase of pressure …

Settore ING-IND/24 - Principi Di Ingegneria ChimicaPolymers and PlasticsChemistryThermodynamicsSettore ING-IND/34 - Bioingegneria IndustrialeGeneral ChemistryCondensed Matter Physicslaw.inventionCooling rateSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiVolume (thermodynamics)Constant pressurelawIsotactic Poly-PropyleneMaterials ChemistryIsobaric processDilatometerCrystallizationConstant (mathematics)
researchProduct

Polymer Solidification under Pressure and High Cooling Rates

2000

Abstract Polymer solidification under processing conditions is a complex phenomenon in which the kinetics of flow, high thermal gradients and high pressures determine the product morphology. The study of polymer structure formed under pressure has been mainly made using conventional techniques such as dilatometry and differential scanning calorimetry under isothermal conditions or non isothermal conditions but at cooling rates several orders of magnitude lower than those experienced in industrial processes. A new equipment has been recently developed and improved to study the crystallization of polypropylene when subjected to pressure and cooled rapidly. An experimental apparatus essentiall…

Polypropylenechemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials sciencePolymers and PlasticsOrders of magnitude (temperature)General Chemical EngineeringAnalytical chemistryPolymerIndentation hardnessIndustrial and Manufacturing EngineeringIsothermal processlaw.inventionchemistry.chemical_compoundDifferential scanning calorimetrychemistryOptical microscopelawPolymer solidificationMaterials ChemistryComposite materialCrystallization
researchProduct

Influence of plasticizers and cryogenic grinding on the high-cooling-rate solidification behavior of PBT/PET blends

2015

Two structurally different plasticizers (cyclic and linear) and the effect of cryogenic grinding on the solidification behavior at high cooling rates by a continuous cooling transformation approach of poly(butylene terephthalate)/poly(ethylene terephthalate), PBT/PET, blends are described. The solidification curve (density versus cooling rate) is confirmed as an effective tool to compare the differences in crystallization behavior under conditions mimicking processing. In comparison to the bulky cyclic plasticizer, the linear oligomeric one was found to have a more pronounced influence on the crystallization behavior. A 60/40 by weight PBT/PET blend shows a drop-off of density at ∼50 K/s. I…

Materials scienceEthylenePolymers and PlasticsPlasticizer02 engineering and technologyGeneral ChemistryCooling ratesContinuous cooling transformation010402 general chemistry021001 nanoscience & nanotechnologyCryogenic grinding01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsGrindinglaw.inventionchemistry.chemical_compoundCooling ratechemistrylawMaterials ChemistryCrystallizationComposite material0210 nano-technologyJournal of Applied Polymer Science
researchProduct

The continuous cooling transformation (CCT) as a flexible tool to investigate polymer crystallization under processing conditions

2009

An experimental route for investigating polymer crystallization over a wide range of cooling rates (from 0.01 to 1000◦C/s) and pressures (from 0.1 to 40 MPa) is illustrated, using a method that recalls the approach adopted in metallurgy for studying structure development in metals. Two types of experimental setup were used, namely an apparatus for fast cooling of thin films (100–200 μm thick) at various cooling rates under atmospheric pressure and a device (based on a on-purpose modified injection molding machine) for quenching massive samples (about 1–2 cm3) under hydrostatic pressure fields. In both cases, ex situ characterization experiments were carried out to probe the resulting struct…

DiffractionQuenchingSettore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials sciencePolymers and PlasticsAtmospheric pressureGeneral Chemical EngineeringCrystallization of polymersOrganic ChemistryHydrostatic pressureAnalytical chemistryContinuous cooling transformationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiCooling rate Density Morphology Pressure ProcessingThin filmInjection molding machine
researchProduct

Isotactic polypropylene solidification under pressure and high cooling rates. A master curve approach

2000

Solidification in industrial processes very often involves flow fields, high thermal gradients and high pressures: the development of a model able to describe the polymer behavior becomes complex. Recently a new equipment has been developed and improved to study the crystallization of polymers when quenched under pressure. An experimental apparatus based on a modified, special injection moulding machine has been employed. Polymer samples can be cooled at a known cooling rate up to 100 °C/s and under a constant pressure up to 40 MPa. Density, Micro Hardness (MH), Wide angle X-ray diffraction (WAXD), and annealing measurements were then used to characterize the obtained sample morphology. Res…

Diffractionchemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials sciencePolymers and PlasticsAnnealing (metallurgy)Crystallization of polymersMineralogy-General ChemistryPolymerIndentation hardnesschemistryTacticityThermalMaterials ChemistryInjection mouldingComposite materialPolymer Engineering & Science
researchProduct

Influence of“controlled processing conditions” on the solidification of iPP, PET and PA6

2002

In this work reliable experimental data for three semicrystalline polymers (iPP, PA6, PET) crystallised under pressure and high cooling rates are supplied. These results were achieved on the basis of a model experiment where drastic controlled solidification conditions are applied. The final objective was to quantify the effect of two typical operating conditions (pressure and cooling rate) on the final properties and morphology of the obtained product. The influence of processing conditions on some macroscopically relevant properties, such as density and micro hardness is stressed, together with the influence of processing conditions on the product morphology, investigated by means of Wide…

chemistry.chemical_classificationWork (thermodynamics)Materials scienceMorphology (linguistics)Polymers and PlasticsScatteringOrganic ChemistryMineralogyPolymerCondensed Matter PhysicsIndentation hardnessCrystallinityCooling ratechemistryPressure increaseMaterials ChemistryComposite materialMacromolecular Symposia
researchProduct

Structural modifications in an irradiated ethylene-vinyl alcohol copolymer

1982

Extraction experiments and calorimetric measurements have been performed, on a commercial ethylene-vinyl alcohol copolymer irradiated in the dose range 0–20 Mrad.

chemistry.chemical_classificationMaterials processingMaterials sciencePolymers and PlasticsExtraction (chemistry)AlcoholGeneral ChemistryPolymerCondensed Matter Physicschemistry.chemical_compoundEthylene vinyl alcohol copolymerchemistryPolymer chemistryMaterials ChemistryCopolymerIrradiationBond cleavageNuclear chemistryPolymer Bulletin
researchProduct

Improving surface detection on nanoindentation of compliant materials

2010

Nanoindentation is a versatile tool for monitoring mechanical properties on a local scale. Accurate knowledge of a contact area, and therefore an initial contact, is however necessary for translating the force curve into sample mechanical properties. It is shown that methods for sensing an initial contact by depth sensing instruments (DSI) may be severely in error for compliant materials. With the hardware adopted in this work, the threshold is determined by the elastic modulus; hence the error potentially increases if the material becomes more compliant. A simple method is therefore suggested to determine with accuracy the initial contact on compliant materials whereby the surface contact …

Surface (mathematics)Work (thermodynamics)Materials sciencePosition (vector)Applied MathematicsAcousticsRange (statistics)RadiusNanoindentationContact areaInstrumentationEngineering (miscellaneous)Elastic modulusMeasurement Science and Technology
researchProduct

The solidification behavior of a PBT/PET blend over a wide range of cooling rate

2009

In recent years, much attention has been paid to the development of high-performance polyester blends, among which blends of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable properties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidification behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transformation (CCT) procedure developed previously, aiming …

Materials sciencePolymers and Plastics02 engineering and technologyContinuous cooling transformation010402 general chemistry01 natural sciencesIndentation hardnesslaw.inventionchemistry.chemical_compoundlawPolymer chemistryMaterials ChemistryPolyethylene terephthalatePhysical and Theoretical ChemistryComposite materialCrystallizationchemistry.chemical_classificationPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesPolyesterPolybutylene terephthalatechemistryPolymer blend0210 nano-technologyJournal of Polymer Science Part B: Polymer Physics
researchProduct

Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates

2001

Abstract The influence of ethylene content, nucleating agents and cooling rate upon the formation of γ phase in isotactic polypropylene is investigated. Detailed analysis of wide angle X-ray diffraction shows that some γ phase can appear even in copolymers of very low ethylene content (0.5 mol.%). Differential scanning calorimetry shows a double melting peak. Nucleating agents of different types are found to enhance γ phase crystallization, even in high molecular weight homopolymers. In any of the materials studied the amount of γ phase decreases with increasing cooling rate, going to zero at a cooling rate of about 10°C s−1. We interpret the observations in terms of the kinetics of growth …

EthyleneMaterials sciencePolymers and PlasticsComonomerOrganic ChemistryKineticsNucleationlaw.inventionchemistry.chemical_compoundDifferential scanning calorimetrychemistryChemical engineeringlawTacticityPolymer chemistryMaterials ChemistryCopolymerCrystallizationPolymer
researchProduct

Local mechanical properties by Atomic Force Microscopy nanoindentations

2008

The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components- Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy, AFM, can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, …

soft materials polymers elastic Young’s modulus nanoscale mapping mechanical propertiesMaterials scienceatomic force microscopynanoindentationIndentationMicroscopyModulusTexture (crystalline)NanoindentationComposite materialPenetration depthElastic modulusViscoelasticity
researchProduct

Some experimental issues of AFM tip blind estimation. The effect of noise and resolution

2006

The convolution of tip shape on sample topography can introduce significant inaccuracy in an AFM image, when the tip radius is comparable to the typical dimension of the sample features to be observed. The blind estimation method allows one to obtain information on the AFM tip through an unknown characterizer sample and thus to perform the deconvolution of the tip shape from an image. When applying the blind estimation method to determine the AFM tip shape, some apparently trivial issues relating to the experimental operating parameters must be taken into account. In this paper, the effects of the operating parameters, e.g., sampling intervals (resolution) and instrumental noise, have been …

Noise (signal processing)Applied MathematicsAcousticsResolution (electron density)Sampling (statistics)atomic force microscopy tip characterization blind estimationRadiusSample (graphics)ConvolutionDimension (vector space)StatisticsDeconvolutionInstrumentationEngineering (miscellaneous)Mathematics
researchProduct

Nanoscale mechanical characterization of polymers by atomic force microscopy (AFM) nanoindentations: viscoelastic characterization of a model material

2009

The atomic force microscope (AFM), apart from its conventional use as a microscope, is also used for the characterization of the local mechanical properties of polymers. In fact, the elastic characterization of purely elastic materials using this instrument can be considered as a well-assessed technique while the characterization of the viscoelastic mechanical properties remains the challenge. In particular, one finds the mechanical behavior changing when performing indentations at different loading rates, i.e. on different time scales. Moreover, this apparent viscoelastic behavior can also be due to complex contact mechanics phenomena, with the onset of plasticity and long-term viscoelasti…

Materials scienceApplied MathematicsNanotechnologyDynamic mechanical analysisNanoindentationPlasticityViscoelasticityCharacterization (materials science)Contact mechanicsTime–temperature superpositionIndentationComposite materialInstrumentationEngineering (miscellaneous)Measurement Science and Technology
researchProduct

PLLA/PLA scaffolds prepared via Thermally Induced Phase Separation (TIPS): tuning of properties and biodegradability

2008

Foams for tissue engineering applications were prepared via thermally induced phase separation (TIPS). Poly-L-Lactic Acid (PLLA) and blends of PLLA with PLA in different proportions were used (100/0, 90/10, 75/25, 50/50, 0/100 PLLA/PLA wt/wt) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection) and the void fraction was measured by means of Hg porosimetry. Foams apparent density was also evaluated (porosity ranges from 87% to 92%). Biodegradability was estimated in a body mimicking fluid. Results show that structure and morphology (in terms of average pore size …

chemistry.chemical_classificationMaterials scienceMorphology (linguistics)Scanning electron microscopePorosimetryPolymerSolventchemistryTissue engineeringGeneral Materials ScienceTissue engineering TIPS PLLA/PLA blends Phase separation ScaffoldComposite materialTernary operationPorosity
researchProduct

Nanoscale mechanical characterization of polymers by AFM nanoindentations: Critical approach to the elastic characterization

2006

AFM nanoindentations show a dependence of penetration, i.e., the relative motion between the sample and the tip (indenter), on material elastic properties when using the same load. This elationship becomes visible by using of samples being homogeneous down to the scale of nanoindentation. They were prepared from materials covering a broad range of mechanical behavior: from rubbery networks to glassy and semicrystalline polymers. The elastic modulus can be obtained applying Sneddon’s elastic contact mechanics approach. To do this, some calibrations and instrumental features have to be measured accurately. All the polymers tested show that the contact between the tip and the sample is dominat…

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsOrganic ChemistryPolymerPenetration (firestop)NanoindentationInorganic ChemistryCrystallinityContact mechanicsSettore ING-IND/22 - Scienza E Tecnologia Dei Materialichemistryvisual_artPolymer chemistryMaterials Chemistryvisual_art.visual_art_mediumNanoscale mechanicalPolycarbonateComposite materialNanoscopic scaleElastic modulus
researchProduct

Structural and morphological rearrangements in quenched poly(ethylene) by simultaneous SAXS/WAXS

2000

Structure formation by crystallization from the melt in a wide range of cooling rates (0.08-1 000°C/s) in low-density polyethylene has been studied by simultaneous small- and wide-angle X-ray scattering at the synchroton radiation source of DESY. The occurrence of two periodicities, characterized by different angular position of Bragg's maxima, was observed, pointing to the existence of two types of lamellar stacks, associated with two different long period values L 1 and L 2 (L 1 > L 2 ). L 1 depends on the cooling rate, whereas L 2 is almost constant. A comparison with isotactic polypropylene is performed, where a similar phenomenon takes place. While in the case of i-PP a definite correl…

Structure formationPolymers and PlasticsScatteringChemistrySmall-angle X-ray scatteringOrganic ChemistryPolyethyleneCondensed Matter PhysicsSynchrotronlaw.inventionchemistry.chemical_compoundCrystallographylawTacticityMaterials ChemistryLamellar structurePhysical and Theoretical ChemistryCrystallizationMacromolecular Chemistry and Physics
researchProduct

Influence of plasticizers suggests role of topology in polymer solidification at high cooling rates

2012

Although solidification in processing deter- mines short- and long-term properties, methods for under- standing polymer crystallization mostly rely on real time experiments. Their evidences being drawn on time scales farther apart with respect to those experienced in process- ing. Nor significant outcomes have been so far drawn with approaches mimicking the typical processing times, the Continuous Cooling Transformation methods. Use of these techniques has indeed been limited to a heuristic interpretation of the structure developed under extreme solidification conditions without suggesting alternative routes to the understanding or even clues to the many open questions on polymer crystalliz…

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsCrystallization of polymersNucleationGeneral ChemistryPolymerContinuous cooling transformationTopologySurfaces Coatings and Filmslaw.inventionCrystalchemistry.chemical_compoundPolybutylene terephthalatechemistrylawMaterials ChemistryPolyethylene terephthalateCrystallizationJournal of Applied Polymer Science
researchProduct

1982

chemistry.chemical_compoundEthanolchemistryvisual_artvisual_art.visual_art_mediummedicineOrganic chemistrySolubilitySwellingmedicine.symptomPoly(methyl methacrylate)Die Makromolekulare Chemie, Rapid Communications
researchProduct

Crystallization kinetics of iPP: Influence of operating conditions and molecular parameters

2007

An analysis of the crystallization kinetics of different grades of isotactic polypropylene (iPP) is here presented. To describe the crystallization kinetics as a function of molecular and operating parameters, the methodological path followed was the preparation of quenched samples of known cooling histories, calorimetric crystallization isotherms tests, differential scanning calorimetry cooling ramps, wide angle X-ray diffraction (WAXD) measurements, and density determination. The WAXD analysis performed on the quenched iPP samples confirmed that during the fast cooling at least a crystalline structure and a mesomorphic one form. The diffractograms were analyzed by a deconvolution procedur…

DiffractionMaterials sciencePolymers and PlasticsKineticsNucleationThermodynamicsGeneral ChemistryCrystal structureSurfaces Coatings and Filmslaw.inventionCrystallinityDifferential scanning calorimetrylawTacticityPolymer chemistryMaterials ChemistryCrystallizationJournal of Applied Polymer Science
researchProduct

Influence of morphology and chemical structure on the inverse response of polypropylene to gamma radiation under vacuum

1999

Abstract In this work the influence of the chemical structure and of the morphology on the gamma-radiation effects on polypropylene based polymers is studied on the basis of a previously discussed kinetic model [1] . For this aim an isotactic polypropylene and a random ethylene–propylene copolymer were irradiated under vacuum at one dose rate and several absorbed doses after well defined solidification conditions. We show that the model is reliable varying both the chemical structure and the morphology of the polypropylene based polymer. An inversion of the response of the material to gamma radiation under vacuum is always observed, and the inversion conditions depend on the irradiation par…

chemistry.chemical_classificationPolypropyleneMaterials sciencePolymers and PlasticsOrganic ChemistryPolymerRadiationRadiation effectchemistry.chemical_compoundchemistryTacticityPhase (matter)Absorbed dosePolymer chemistryMaterials ChemistryIrradiationComposite material
researchProduct

Structure development in poly(ethylene terephthalate) quenched from the melt at high cooling rates: X-ray scattering and microhardness study

2000

The structure and microhardness of poly(ethylene terephthalate) (PET) cooled from the melt, using a wide range of cooling rates, was studied. PET thin films rapidly cooled from the melt (cooling rates larger than 5°C/s) show a continuous variation of structure and properties depending on cooling rate. Results highlight differences in the micro-mechanical properties of the glass suggesting the occurrence of amorphous structures with different degrees of internal chain ordering. The comparative X-ray scattering study of two glassy PET samples (7500 and 17°C/s) reveals the occurrence of frozen-in electron density states giving rise to an excess of scattering for the amorphous sample solidified…

QuenchingMaterials scienceSolidification under fast coolingPolymers and PlasticsScatteringSmall-angle X-ray scatteringOrganic ChemistryAnalytical chemistryPoly(ethylene terephthalate)Isothermal processAmorphous solidlaw.inventionCrystallographyGlassy stateslawMaterials ChemistryHardening (metallurgy)Poly(ethylene terephthalate); Solidification under fast cooling; Glassy statesThin filmCrystallization
researchProduct

Orientation and Crystallinity Measurements in Film Casting Products

2003

Film casting experiments were carried out with iPP under processing conditions causing the crystallization process to occur under orienting flow. Draw ratio and cooling rates were changed by varying mass flow rates and die thickness. The effect of processing conditions on film crystallinity was investigated by combining WAXS and FT-IR transmission methods, while orientation of both phases was measured by IR dichroism (according to Fraser's method) and successfully compared to birefringence measurements on final films. Crystallinity appears to be almost insensitive to draw ratio and cooling rate. Moreover the crystallinity profile turned out to be also constant along the transverse film dire…

Film castingSettore ING-IND/24 - Principi Di Ingegneria Chimicabusiness.product_categoryBirefringencePolymers and PlasticsChemistrybusiness.industryMass flowGeneral ChemistryDichroismCondensed Matter PhysicsCastinglaw.inventionTransverse planeCrystallinityOpticslawMaterials ChemistryDie (manufacturing)Composite materialCrystallizationbusiness
researchProduct

Indentation test as a tool for monitoring the solidification process during injection molding

2003

An inline method for monitoring the solidification process during the injection molding of semicrystalline polymers is demonstrated. The method has been applied to various poly(ethylene terephthalate) (PET) and poly(buthylene terephthalate) (PBT) samples. The technique is based on a simple device by which an additional ejector pin is pushed onto the injection-molded part with a fixed force at different times during the solidification phase while the mold remains closed. The residual deformation (the so-called indentation depth) due to the applied load is measured offline after ejection. By the performance of indentation at different times during the cooling phase, an indentation depth profi…

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsGlass fiberGeneral ChemistryInjectorMolding (process)Polymermedicine.disease_causeSurfaces Coatings and Filmslaw.inventionchemistrylawIndentationPhase (matter)MoldMaterials ChemistrymedicineComposite materialCrystallizationJournal of Applied Polymer Science
researchProduct

Role of thermal history on quiescent cold crystallization of PET

2002

8 pags., 9 figs.

Materials sciencePolymers and PlasticsScatteringPET. Cold crystallization. Isothermal. Thermal history. GlassOrganic ChemistryKineticsNucleationThermodynamicsKinetic energyCondensed Matter::Disordered Systems and Neural NetworksIndentation hardnessIsothermal processlaw.inventionAmorphous solidlawPolymer chemistryMaterials ChemistryCrystallization
researchProduct

Ageing of isotactic polypropylene due to morphology evolution, experimental limitations of realtime density measurements with a gradient column

2006

Abstract Ageing in crystalline polymers is responsible for the deterioration of physical properties leading, for example, to a decrease in toughness and to dimensional changes that are to some extent responsible for warpage and scrap production in injection molding. Since, it depends on the mutual transformation of stable and metastable phases, being always related to changes in morphological organization, it is here preferred to call it ‘Morphological ageing’. Although, one would expect the ageing regime to be determined by the complex morphology with amorphous phases of different mobility and eventually multiple crystalline phases, transformed into each other at an associated transition, …

Work (thermodynamics)ToughnessMaterials sciencePolymers and PlasticsLogarithmScatteringOrganic ChemistryMineralogyThermodynamicsDensity evolutionPost processingAmorphous solidMorphological ageingSuperposition principleSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiAgeingMetastabilityMaterials Chemistry
researchProduct

Non-isothermal crystallization kinetics of PET

2000

The crystallization kinetics of poly(ethylene terephthalate) was studied using constant cooling rate, isothermal and quenching experiments. A non-isothermal crystallization kinetics equation based on a single mechanism was used to analyze the data. Different mechanisms of crystallization at low, intermediate, and high cooling rates were hypothesized based on deviation of the experimental data from the single mechanism model.

QuenchingEthyleneMaterials sciencePolymers and PlasticsKineticstechnology industry and agricultureIsothermal crystallizationThermodynamicsGeneral ChemistryIsothermal processlaw.inventionCrystallization kineticschemistry.chemical_compoundCooling ratechemistrylawMaterials ChemistryCrystallization
researchProduct

Accurately evaluating Young’s modulus of polymers through nanoindentations: a phenomenological correction factor to the Oliver and Pharr procedure

2006

The Oliver and Pharr [J. Mater. Res. 7, 1564 (1992)] procedure is a widely used tool to analyze nanoindentation force curves obtained on metals or ceramics. Its application to polymers is, however, difficult, as Young’s moduli are commonly overestimated mainly because of viscoelastic effects and pileup. However, polymers spanning a large range of morphologies have been used in this work to introduce a phenomenological correction factor. It depends on indenter geometry: sets of calibration indentations have to be performed on some polymers with known elastic moduli to characterize each indenter.

chemistry.chemical_classificationMaterials sciencePhysics and Astronomy (miscellaneous)Young's modulusLarge rangePolymernanoindentation elastic modulus polymersNanoindentationViscoelasticityModulisymbols.namesakeSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiClassical mechanicschemistryIndentationsymbolsComposite materialElastic modulus
researchProduct

An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates

2002

Abstract A new experimental route for investigating polymer crystallization under very high cooling rates (up to 2000°C/s) is described. A complete and exhaustive description of the apparatus employed for preparing thin quenched samples (100– 200 μm thick) is reported, the cooling mechanism and the temperature distribution across sample thickness is also analysed, showing that the final structure is determined only by the thermal history imposed by the fast quench apparatus. Details concerning the characterization techniques used to probe the final structure are reported, including density measurements and wide angle X-ray diffraction patterns. Experimental results concerning isotactic poly…

DiffractionMorphologyMaterials sciencePolymersGeneral Chemical EngineeringCrystallization of polymersMineralogyProcessingIndustrial and Manufacturing Engineeringlaw.inventionSolidificationlawTacticityHeat transferCrystallizationComposite materialchemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria ChimicaApplied MathematicsCooling rateGeneral ChemistryPolymerCharacterization (materials science)chemistryPolyamideHeat transfer
researchProduct

Wide-range cooling characteristics of a selected isotactic polypropylene

1997

Abstract An increased knowledge of polymer crystallization kinetics and its effect on the crystalline structure is of particular importance at high cooling rates. The aims of this study were to explore the range of utility and complementarity of various methods (densitometry, microscopy, wide-angle x-ray diffraction [WAXD], and small-angle light scattering [SALS]) on the characterization of the crystalline structure of a high purity isotactic polypropylene (PP) in a wider cooling range than previously obtainable and to identify characteristic ranges of the structure as a function of cooling rate. High cooling rates, ranging to nearly 1000°C/sec, were obtained using a special quench device. …

DiffractionMaterials sciencePolymers and PlasticsCrystallization of polymersAnalytical chemistryGeneral ChemistryCrystal structureCondensed Matter PhysicsLight scatteringCrystallographySpherulitePhase (matter)TacticityMicroscopyMaterials ChemistryJournal of Macromolecular Science, Part B
researchProduct

Crystallization of polymer melts under fast cooling. II. High-purity iPP

1992

SYNOPSIS Samples of a high-purity isotactic polypropylene (iPP) were quenched from the melt so as to monitor cooling history. A continuous variation of morphology and crystal structure was obtained with cooling rate. This is discussed in relation to sample thermal history evidencing that cooling history relevant to quenched samples is in the neighborhood of 90°C. In particular the samples are essentially mesomorphic when at this temperature cooling rates larger than 80°C/s were adopted, while below a few tens of °C/s only a­ monocline form is obtained. Densities of quenched samples were compared with predictions of an isokinetic extrapolation of Avrami model of polymer crystallization kinet…

chemistry.chemical_classificationPolymers and PlasticsChemistryCrystallization of polymersKineticsThermodynamicsGeneral ChemistryPolymerCrystal structureSurfaces Coatings and Filmslaw.inventionMonoclinelawTacticityThermalPolymer chemistryMaterials ChemistryCrystallizationJournal of Applied Polymer Science
researchProduct

Crystallization Behaviour at High Cooling Rates of Two Polypropylenes

1993

Phase distribution of quenched samples of two isotactic polypropylenes, having different molecular weight distributions, was evaluated by a deconvolution procedure of WAXD spectra. The dependence on cooling rate of the two resins shows the low molecular weights rich polymer is characterized by a faster kinetics with an α-monoclinic to mesomorphic transition taking place at higher cooling rates.

chemistry.chemical_classificationMaterials scienceKineticsThermodynamicsCooling ratesPolymerSpectral linelaw.inventionchemistrylawPhase (matter)TacticityMolar mass distributionCrystallization
researchProduct

Phase Transitions in Prequenched Mesomorphic Isotactic Polypropylene during Heating and Annealing Processes As Revealed by Simultaneous Synchrotron S…

2011

Time-resolved simultaneous synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) technique was used to investigate the phase transitions in prequenched mesomorphic isotactic polypropylene (iPP) samples during heating and annealing processes, respectively. For the heating process, it is shown that the mesomorphic-to-monoclinic phase transition is relatively faster for the mesomorphic iPP sample obtained with the high quenching rate than that with the low quenching rate. For the former, the stability of α-monoclinic crystals formed during heating is relatively higher. As for the annealing process, WAXD and SAXS data illustrate that the higher the annealing te…

Phase transitionMaterials scienceSmall-angle X-ray scatteringAnnealing (metallurgy)Crystal growthSynchrotronSurfaces Coatings and Filmslaw.inventionCrystalCondensed Matter::Materials ScienceAvrami equationCrystallographylawTacticityMaterials ChemistryPhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct

Analysis of the crystallization behaviour of PBT-rich PBT/PET blends under processing conditions

2007

Among the high‐performance polyesters blends PBT/PET blends are expected to exhibit remarkable properties as far as the crystallization behaviour is concerned. The solidification behaviour of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a Continuous Cooling Transformation (CCT) procedure developed by the authors, aiming to emulate the typical conditions encountered in polymer processing. A set of several samples characterized by an homogeneous structure was prepared by solidification from the melt through spray cooling, and the resulting structure and properties were evaluated by density, Micro Hardness (MH), Wide Angle X‐ray Diffraction (WAXD) m…

Diffractionchemistry.chemical_classificationMaterials sciencePolymerContinuous cooling transformationIndentation hardnesslaw.inventionPolyesterNatural rubberchemistrylawvisual_artvisual_art.visual_art_mediumPolymer blendCrystallizationComposite material
researchProduct

The use of master curves to describe the simultaneous effect of cooling rate and pressure on polymer crystallization

2003

In a previous work a master-curve approach was applied to experimental density data to explain isotactic polypropylene (iPP) behaviour under pressure and high cooling rates. Suitable samples were prepared by solidification from the melt under various cooling rate and pressure conditions with the help of a special apparatus based on a modified injection moulding machine. The approach here reported is more general than the case study previously shown, and is suitable to be applied to several materials and for different measures related to crystalline content. The proposed simple model is able to predict successfully the final polymer properties (density, micro-hardness, crystallinity) by supe…

chemistry.chemical_classificationWork (thermodynamics)Settore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials sciencePolymers and PlasticsCrystallization of polymersOrganic ChemistrySettore ING-IND/34 - Bioingegneria IndustrialePolymerCrystallization Kineticslaw.inventionCrystallinitySuperposition principlechemistrylawTacticityMaterials ChemistryInjection mouldingComposite materialCrystallization
researchProduct

SAXS/WAXS study of the annealing process in quenched samples of isotactic poly(propylene)

1999

The structural rearrangement in samples of quenched isotactic poly(propylene) (iPP) submitted to different annealing treatments has been studied using simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) at the synchrotron radiation source of DESY, Hamburg. From a quantitative analysis of the WAXS profiles the values of the α-monoclinic, mesomorphic, and amorphous mass fractions coexisting in the material were determined. It is demonstrated that the SAXS patterns were characterized by two different long-period values that are attributed to α- and mesomorphic periodicity, respectively. The related α- and mesomorphic volume phase fractions, calculated from the analysis of the SAXS …

Materials sciencePolymers and PlasticsScatteringSmall-angle X-ray scatteringAnnealing (metallurgy)Organic ChemistrySynchrotron Radiation SourceCondensed Matter PhysicsAmorphous solidCrystallographyTacticityMaterials ChemistryThickeningPhysical and Theoretical ChemistryMass fraction
researchProduct

Mechanical properties of the nanometer scale pre-crystalline order of a poly (ethylene terepthalate) / poly (ethylene naphthalene) blend

2006

A previous study carried out on PET has shown that this polymer undergoes a continuous structural modification over a wide cooling rate interval when solidified from the melt[1] assuming a semi-crystalline structure below 2 K s 1 and a completely amorphous one above 100 K s 1. Most important was the existence of a state of intermediate order between the above cooling rates which was evidenced by the absence of crystalline reflections in the WAXS patterns and the occurrence of SAXS maxima[2] and exothermic peak areas (DSC) in the cooling rate range above 2 K s 1. Microhardness (MH) measurements revealed that this phase affects the mechanical properties[3] plausible if one thinks of crystalli…

Materials scienceNanostructurePolymers and PlasticsnanoindentationOrganic ChemistryNanoindentationIndentation hardnesscrystalline clusterpolyester blendAmorphous solidPolyesterSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMaterials ChemistryNanometreatomic force microscopy (AFM)Polymer blendComposite materialElastic modulus
researchProduct

Polymer solidification under Processing Conditions in quiescent conditions by the Continuous Cooling Transformation approach

2005

researchProduct

Relating morphology to nanoscale mechanical properties: from crystalline to mesomorphic iPP

2005

Atomic force microscopyMechanical characterizationNanoindentation
researchProduct

Linking structure and mechanical properties via instrumented nanoindentations on well-defined morphology poly(ethylene) Polymer 50 8 1939-1947 2009

2009

Several poly(ethylene) samples with a broad range of morphologies were studied in this work using nanoindentations. The samples had degrees of crystallinity ranging from 30 to100% while their Young’s modulus ranged from few tens of MPa up to several GPa. Experimental conditions for the correct evaluation of Young’s modulus were at first identified, choosing a suitable loading rate in order to minimize viscoelastic effects on the unloading. The force curves, i.e. plots of applied load vs. penetration depth, were then analyzed following two common procedures available in the literature. None of these procedures leads to satisfying results when compared to other experimental techniques. Howeve…

nanoindenation morphology mechanical properties
researchProduct

Influence of high cooling rates on the structure-properties relationship of dynamic vulcanizates

2004

researchProduct

Transition From Mesomorphic Nodular Nano-Crystals To Monoclinic Lamellae In Isotactic Polypropylene

2006

researchProduct

Crystallization kinetics of a PBT/PET blend according to a Continuous Cooling Transformation (CCT) approach

2005

researchProduct

CRYSTALLIZATION OF PBT/PET BLENDS UNDER LOW AND HIGH COOLING RATES: THERMODYNAMICS AND KINETICS CONSIDERATIONS

2008

researchProduct

Structure settling of injection moulded products due to ageing of metastable solid phases developed under solidification

2006

researchProduct

Polymer crystallization from a quiescent melt

2007

researchProduct

Influence of high cooling rates on the structure development of dynamic vulcanizates

2004

researchProduct

Measuring mechanical properties of polymers on nanometre and submicrometre scale through nanoidentions

2006

researchProduct

Onset of “precrystalline” phase with cooling rate in amorphous linear polyester series: PET, PTT, PBT

2004

researchProduct

Determination of the crystallization kinetics of a PBT/PET blend in relation to the behaviour of the constituents

2005

researchProduct

Influence of post-processing ageing on mechanical strength of injection molded polypropylene

2007

researchProduct

Tailoring the morphology and stability of nano-crystals in iPP by the condition of primary melt-crystallization & subsequent annealing at elevated te…

2006

researchProduct

Elastic Moduli Of Well-Defined Polypropylenes Morphologies By Dsi Nanoindentations

2007

researchProduct

Blending PLLA with PLA so as to tune the biodegradabilty of polymeric scaffolds for soft tissue engineering

2008

BiodegradationPolymer blendPolylactic acid
researchProduct

SOLIDIFICATION BEHAVIOUR OF PBT/PET BLENDS UNDER PROCESSING CONDITIONS

2007

researchProduct

Synthesis of PLLA scaffolds for tissue engineering via phase separation

2006

researchProduct

Solidification of sindiotactic polystyrene (sPS) under drastic conditions by CCT

2004

researchProduct

Studio della solidificazione durante lo stampaggio ad iniezione mediante un test di indentazione

2004

researchProduct

Metastability and Post-forming behaviour of semi-crystalline polymers

2004

researchProduct

Thermal history in processing and post-processing steps influencing the mechanical strength of polypropylene

2007

researchProduct

A method for mapping local mechanical properties on the nanometer scale by AFM

2005

researchProduct

Continuous Cooling Transformation, a route for understanding Polymer solidification under Processing Conditions

2005

researchProduct

PLLA scaffolds for tissue engineering prepared via thermally induced phase separation

2006

researchProduct

Mapping Mechanical Properties on the Nanometer Scale by Atomic Force Microscopy

2006

researchProduct

Solidification of Syndiotactic Polistyrene (sPS) under Pressure and High Cooling Rate

2006

researchProduct

Atomic Force Microscope Nanoindentations to Reliably Measure the Young's Modulus of Soft Matter

2007

researchProduct

Relating Texture and Local Mechanical Properties of Semicrystalline Polymers by AFM Nanoindentation

2006

researchProduct

Solidification of sindiotactic polystyrene (sPS) under drastic conditions by Continuous Cooling Transformation (CCT)

2004

researchProduct

Process-morphology relationships on injection moulding of isotactic polypropylene in standard steel tool and rapid epoxy tooling

2007

researchProduct

Effect of pressure and high cooling rates on the solidification behaviour of sindiotactic polystryrene (sPS)

2006

researchProduct

A critical study on nanometer scale elastic characterization by nanoindentation

2005

researchProduct

Injection moulding of thin and thick iPP parts in epoxy resin and steel moulds: a comparative study on properties development

2006

researchProduct

Structure Distribution in Inhomogenous Samples by nanoindentation techniques: DSI vs AFM

2007

researchProduct

The solidification behavior of a PBT/PET blend over a wide range of cooling rate

2009

In recent years, much attention has been paid to the development of high-performance polyester blends, among which blends of polybutylene terephtha- late/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable prop- erties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidifica- tion behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transforma- tion (CCT) procedure developed previously,…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaPETSettore ING-IND/22 - Scienza E Tecnologia Dei Materialicrystallization[CHIM]Chemical Sciencespolyestersolidification[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]blendPBTComputingMilieux_MISCELLANEOUSpolymer solidification
researchProduct

Crystallization behaviour of PBT-rich PBT/PET blends according to a Continuous Cooling Transformation (CCT) protocol

2006

researchProduct

In-line assessment of the melting behaviour during polymer extrusion

2007

researchProduct

Simulating Morphology development in Polymer Processing: Continuous Cooling Transformation of sPS

2004

researchProduct

The use of Diffusion Induced Phase Separation (DIPS) technique for the preparation of biodegradable scaffolds for angiogenesis

2008

DIPSPhase separationAngiogenesis
researchProduct

Nanoscale mechanical characterization of polymers by atomic force microscopy (AFM) nanoindentations: Viscoelastic characterization on a model material

2009

The Atomic Force Microscope (AFM), apart form its conventional use as a microscope, is also used for the characterization of the local mechanical properties of polymers. In fact, the elastic characterization of purely elastic materials using this instrument can be considered as a well assessed technique while the challenge remains the characterization of the viscoelastic mechanical properties. In particular, one finds the mechanical behavior changing when performing indentations at different loading rates, i.e., on different time scales. Moreover, this apparent viscoelastic behavior can also be due to complex contact mechanics phenomena, with the onset of plasticity and long-term viscoelast…

nanoindentation atomic force microscopy viscoelastic rubbersSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct

Many-scale molecular modeling of PET/PEN blends

2005

polyethylene PET/PEN blend
researchProduct

Comparison of thin-wall injection moulding of isotactic polypropylene in standard steel tool and rapid epoxy tooling

2007

researchProduct

Nanocrystalline morphology of some linear polyesters and some of their blends when quenched to amorphous

2005

researchProduct