0000000000985993

AUTHOR

Alexander Damm

showing 12 related works from this author

Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level

2019

Imaging and non-imaging spectroscopy employed in the field and from aircraft is frequently used to assess biochemical, structural, and functional plant traits, as well as their dynamics in an environmental matrix. With the increasing availability of high-resolution spectroradiometers, it has become feasible to measure fine spectral features, such as those needed to estimate sun-induced chlorophyll fluorescence (F), which is a signal related to the photosynthetic process of plants. The measurement of F requires highly accurate and precise radiance measurements in combination with very sophisticated measurement protocols. Additionally, because F has a highly dynamic nature (compared with othe…

VegetationUFSP13-8 Global Change and BiodiversityFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTREScienceQ1900 General Earth and Planetary SciencesGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERASun-induced fluorescence; Spectroradiometer; Spectrometer; Vegetation; Radiance; Reflectance; Remote sensing; FLEXReflectanceRadianceRemote sensingSpectrometerGEO/11 - GEOFISICA APPLICATAFLEX10122 Institute of GeographyGEO/10 - GEOFISICA DELLA TERRA SOLIDASun-induced fluorescenceSpectroradiometerGeneral Earth and Planetary Sciencesddc:620910 Geography & travel
researchProduct

Quantitative global mapping of terrestrial vegetation photosynthesis

2017

Although traditional remote sensing systems based on spectral reflectance can already provide estimates of the 'potential' photosynthetic activity of terrestrial vegetation through the quantification of total canopy chlorophyll content or absorbed photosynthetic radiation, the determination of the 'actual' photosynthetic activity of terrestrial vegetation requires information about how the absorbed light is used by plants, such as vegetation fluorescence, using very high spectral resolution spectroscopy in the range 650-800 nm. The Fluorescence Explorer (FLEX) mission, selected in November 2015 as the 8th Earth Explorer by the European Space Agency (ESA), carries the FLORIS spectrometer, wi…

Canopy010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyimaging spectroscopy01 natural sciencesphotosynthesivegetationphotosyntesis1706 Computer Science ApplicationsSpectral resolution910 Geography & travelImage resolutionFLEX earth explorer021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSpectrometer1900 General Earth and Planetary Sciencesimaging spectrocopyVegetation15. Life on landImaging spectroscopy10122 Institute of Geography13. Climate actionRadianceEnvironmental scienceSatellitefluorescence
researchProduct

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

2019

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

010504 meteorology & atmospheric sciencesComputer scienceEconomicsGround spectrometersScience0211 other engineering and technologiesContext (language use)02 engineering and technologyGround spectrometer01 natural sciencesSpectral lineRetrieval methodApproximation errorSun-induced chlorophyll fluorescenceSensitivity (control systems)910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRetrieval methodsSpectrometerSun-induced chlorophyll fluorescence; Ground spectrometers; Retrieval methods1900 General Earth and Planetary SciencesQHyperspectral imagingsun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods3. Good health10122 Institute of GeographyFISICA APLICADALine (geometry)General Earth and Planetary Sciencesddc:620Interpolation
researchProduct

Red and far-red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

2015

Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated…

Chemistry1900 General Earth and Planetary SciencesImaging spectrometerfood and beveragesFar-redPhotosynthetic efficiencyPhotosynthesisFluorescenceGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographyGeophysicsRadianceddc:550General Earth and Planetary Sciences910 Geography & travel1908 GeophysicsControlled experimentfluorescence airborne sensor high resolution photosynthesisChlorophyll fluorescenceRemote sensing
researchProduct

CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the …

2009

The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO<sub>2</sub> fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype ai…

Imaging spectrometerMesoscale meteorology1904 Earth-Surface Processeslcsh:Life550 - Earth sciencesPhotosynthetic efficiencyINDUCED CHLOROPHYLL FLUORESCENCE; GROSS PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; STEADY-STATE; WATER-STRESS; REFLECTANCE; FIELD; HETEROGENEITY; DYNAMICS; BOREALremote sensingEvapotranspirationddc:570lcsh:QH540-549.5910 Geography & travelTransectEcology Evolution Behavior and SystematicsEarth-Surface ProcessesRemote sensingphotosynthesisSpectrometerlcsh:QE1-996.5Hyperspectral imagingFluorescenceFLEX Fluorescence AHS HYPER AirFLEXJlcsh:Geologylcsh:QH501-531GEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of Geography1105 Ecology Evolution Behavior and SystematicsEnvironmental sciencefluorescencelcsh:Ecologyoxygenprimary production
researchProduct

Remote sensing of sun-induced chlorophyll fluorescence at different scales

2014

In this contribution we present activities and selected results obtained in recent studies and campaigns conducted in the context of the FLuorescence EXplorer (FLEX) mission. FLEX is a candidate mission for the ESA 8th Earth Explorer and large efforts are currently dedicated to the development of an implementation scheme for an accurate mapping of fluorescence from the selected spaceborne sensor and mission configuration. Field and airborne data collected in different experimental campaigns, together with simulated data, have been used to demonstrate the feasibility of fluorescence retrievals and the potential of exploiting high spatial resolution fluorescence maps for a better understandin…

FLORISfield measurementComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingContext (language use)Atmospheric modelFLEX missionGeneralLiterature_MISCELLANEOUSRemote sensing (archaeology)Simulated datafield measurementsHyPlantSun-induced chlorophyll fluorescenceHigh spatial resolutionEnvironmental scienceFLEXChlorophyll fluorescenceRemote sensing2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
researchProduct

The 2013 FLEX—US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA

2017

The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA’s FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September–October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence…

Canopychlorophyll fluorescence; diurnal responses; red SIF; far-red SIF; SIF ratio; Fratio; <i>HyPlant</i>; G-LiHT; GEP; LUE010504 meteorology & atmospheric sciencesLiHTChronosequence0211 other engineering and technologies02 engineering and technologyfarPhotochemical Reflectance IndexAtmospheric sciences01 natural sciencesGDiurnal cycleLUEdiurnal responses910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesHydrologyTree canopychlorophyll fluorescenceG-LiHT1900 General Earth and Planetary SciencesVegetationGEPSIF ratioFar-red SIFFratio10122 Institute of GeographyLidarDiurnal responseHyPlantGeneral Earth and Planetary SciencesEnvironmental sciencered SIFEarth and Planetary Sciences (all)
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.

2015

Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first …

Chlorophyllinduced fluorescencesunImaging spectrometer2306 Global and Planetary ChangeFluorescence2300 General Environmental SciencePhotosynthesiEnvironmental ChemistryAirborne measurement910 Geography & travelSpectral resolutionPhotosynthesisAbsorption (electromagnetic radiation)Spectroscopyairborne measurementsChlorophyll fluorescenceGeneral Environmental ScienceRemote sensingGlobal and Planetary ChangeSpectrometerEcology2300Remote sensingImaging spectroscopyVegetation monitoringFLEXImaging spectroscopy10122 Institute of GeographyGEO/10 - GEOFISICA DELLA TERRA SOLIDASpectrometry FluorescenceSun-induced fluorescence2304 Environmental ChemistryHyPlantRemote Sensing TechnologySunlightEnvironmental scienceSpatial variabilityChlorophyll fluorescence2303 EcologyGlobal change biology
researchProduct

Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)

2010

Terrestrial gross primary production (GPP) is an important parameter to explore and quantify carbon fixation by plant ecosystems at various scales. Remote sensing (RS) offers a unique possibility to investigate GPP in a spatially explicit fashion; however, budgeting of terrestrial carbon cycles based on this approach still remains uncertain. To improve calculations, spatio-temporal variability of GPP must be investigated in more detail on local and regional scales. The overarching goal of this study is to enhance our knowledge on how environmentally induced changes of photosynthetic light-use efficiency (LUE) are linked with optical RS parameters. Diurnal courses of sun-induced fluorescence…

Global and Planetary ChangeEcologyEddy covarianceClimate changePrimary productionPhotosynthetic efficiencyPhotochemical Reflectance IndexPhotosynthesisCarbon cycleEnvironmental ChemistryEnvironmental sciencePrimary productivityGeneral Environmental ScienceRemote sensingGlobal Change Biology
researchProduct

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

2022

10122 Institute of Geography1903 Computers in Earth SciencesSoil ScienceGeology910 Geography & travelComputers in Earth Sciences1111 Soil Science1907 Geology
researchProduct

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

2022

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative result…

Precision agriculturemultispectralbiotic and abiotic stresatelliteSoil Sciencesolar induced fluorescenceGeologymulti-modalPrecision agriculture multi-modal solar-induced fluorescence satellite hyperspectral multispectral biotic and abiotic stressUNESCO::CIENCIAS TECNOLÓGICASITC-HYBRIDhyperspectralITC-ISI-JOURNAL-ARTICLEddc:550Computers in Earth Sciences
researchProduct