0000000000986356
AUTHOR
Patrik Schmuki
Reduced grey brookite for noble metal free photocatalytic H2evolution
Herein we introduce for the first time a reduced “grey” brookite TiO2 photocatalyst, produced by thermal hydrogenation of brookite nanoparticles, that shows a remarkable noble metal free photocatalytic H2 evolution. Its activity is substantially higher than that of other TiO2 polymorphs, i.e. anatase or rutile, comparably sized and activated by hydrogenation under optimized conditions. Along with brookite powders, an oriented brookite single crystal was investigated as a defined surface to confirm the effects of the hydrogenation treatment. By a combination of electron paramagnetic resonance (EPR), electron and X-ray characterization techniques applied to the powders and single crystal, we …
Modeling of Growth and Dissolution of Nanotubular Titania in Fluoride-Containing Electrolytes
In this paper, model calculations of diffusion processes and pH profiles inside TiO 2 nanotubes are performed in order to explore key factors in the growth mechanism of this system in aqueous electrolytes. An electrochemical steady state featured by an equivalent rate between oxide growth and dissolution is reached for a given current efficiency. Electrochemical oxide growth is found to be exclusively located at the pore bottom, whereas chemical oxide dissolution is uniformly distributed over the whole nanotube. It can be deduced from the results that electrolyte resistance or diffusion processes in the electrolyte inside the tubes are not limiting.