0000000000986445
AUTHOR
María Lairón-peris
Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi‐omic analysis
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human‐associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose,…
Effect of temperature on the prevalence of Saccharomyces non-cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations,…
Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae
Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant st…
Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model YeastSaccharomyces cerevisiae
Saccharomyces cerevisiae is an important unicellular yeast species within the biotechnological and the food and beverage industries. A significant application of this species is the production of ethanol, where concentrations are limited by cellular toxicity, often at the level of the cell membrane. Here, we characterize 61 S. cerevisiae strains for ethanol tolerance and further analyze five representatives with various ethanol tolerances. The most tolerant strain, AJ4, was dominant in coculture at 0 and 10% ethanol. Unexpectedly, although it does not have the highest noninhibitory concentration or MIC, MY29 was the dominant strain in coculture at 6% ethanol, which may be linked to differen…
Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid
During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethan…
Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…