0000000000986481
AUTHOR
David Gaskell
Deeply virtual compton scattering off the neutron.
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
Precision electron beam polarimetry for next generation nuclear physics experiments
Polarized electron beams have played an important role in scattering experiments at moderate to high beam energies. Historically, these experiments have been primarily targeted at studying hadronic structure — from the quark contribution to the spin structure of protons and neutrons, to nucleon elastic form factors, as well as contributions to these elastic form factors from (strange) sea quarks. Other experiments have aimed to place constraints on new physics beyond the Standard Model. For most experiments, knowledge of the magnitude of the electron beam polarization has not been a limiting systematic uncertainty, with only moderately precise beam polarimetry requirements. However, a new …