0000000000986503
AUTHOR
Jussi S. Vesamäki
Decomposition rate and biochemical fate of carbon from natural polymers and microplastics in boreal lakes
Microbial mineralization of organic compounds is essential for carbon recycling in food webs. Microbes can decompose terrestrial recalcitrant and semi-recalcitrant polymers such as lignin and cellulose, which are precursors for humus formation. In addition to naturally occurring recalcitrant substrates, microplastics have been found in various aquatic environments. However, microbial utilization of lignin, hemicellulose, and microplastics as carbon sources in freshwaters and their biochemical fate and mineralization rate in freshwaters is poorly understood. To fill this knowledge gap, we investigated the biochemical fate and mineralization rates of several natural and synthetic polymer-deri…
Comparing the Ecotoxicological Effects of Perfluorooctanoic Acid (PFOA) and Perfluorohexanoic Acid (PFHxA) on Freshwater Microbial Community
The ubiquitous presence of perfluorinated carboxylic acids (PFCAs) around the globe has attracted increasing attention, due to their persistency, bioaccumulation, and toxicity. Nevertheless, the ecotoxicological effects of the compounds on aquatic microorganisms has remained understudied. Hence, the present study focused on determining, and comparing, the effects of regulated long-chain PFCA, perfluorooctanoic acid (PFOA), and nonregulated short-chain PFCA, perfluorohexanoic acid (PFHxA), on the diversity, structure, microbial growth, and activity of a freshwater microbial community. In the experiment, lake water was incubated for a period of four weeks at three different concentrations of …