0000000000986505
AUTHOR
Matthias Pilecky
Decomposition rate and biochemical fate of carbon from natural polymers and microplastics in boreal lakes
Microbial mineralization of organic compounds is essential for carbon recycling in food webs. Microbes can decompose terrestrial recalcitrant and semi-recalcitrant polymers such as lignin and cellulose, which are precursors for humus formation. In addition to naturally occurring recalcitrant substrates, microplastics have been found in various aquatic environments. However, microbial utilization of lignin, hemicellulose, and microplastics as carbon sources in freshwaters and their biochemical fate and mineralization rate in freshwaters is poorly understood. To fill this knowledge gap, we investigated the biochemical fate and mineralization rates of several natural and synthetic polymer-deri…
Hydrogen isotopes (δ2H) of polyunsaturated fatty acids track bioconversion by zooplankton
1. Organisms at the base of aquatic food webs synthesize essential nutrients, such as omega-3 polyunsaturated fatty acids (n-3 PUFA), which are transferred to consumers at higher trophic levels. Many consumers, requiring n-3 long-chain (LC) PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have limited ability to biosynthesize them from the essential dietary precursor α-linolenic acid (ALA) and thus rely on dietary provision of LC-PUFA. 2. We investigated LC-PUFA metabolism in freshwater zooplankton using stable hydrogen isotopes (δ2H) of fatty acids as tracers. We conducted feeding experiments with the freshwater keystone grazer Daphnia to quantify changes in the δ2…