0000000000987544

AUTHOR

S. Reymond-laruinaz

showing 6 related works from this author

Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν3 band

2015

Abstract RuO 4 is a heavy tetrahedral molecule which has practical uses for several industrial fields. Due to its chemical toxicity and the radiological impact of its 103 and 106 isotopologues, the possible remote sensing of this compound in the atmosphere has renewed interest in its spectroscopic properties. New, higher resolution FTIR spectra have been recorded at room temperature, using an isotopic pure sample of 102 RuO 4 and a sample with all stable isotopes present in natural abundance. We reinvestigate here the strong ν 3 stretching fundamental region and perform new assignments and effective Hamiltonian parameter fits for the five main isotopologues ( 99 RuO 4 , 100 RuO 4 , 101 RuO …

Materials scienceStable isotope ratioAnalytical chemistryTetrahedral molecular geometryInfrared spectroscopyAtomic and Molecular Physics and OpticsSpectral lineRuthenium tetroxidesymbols.namesakechemistry.chemical_compoundNuclear magnetic resonancechemistryIsotopic shiftsymbolsIsotopologuePhysical and Theoretical ChemistryHamiltonian (quantum mechanics)SpectroscopyJournal of Molecular Spectroscopy
researchProduct

Growth and size distribution of Au nanoparticles in annealed Au/TiO2 thin films

2014

Abstract Nanocomposites consisting of noble metal nanoparticles (NPs) embedded in TiO2 thin films are of great interest for applications in optoelectronics, photocatalysis and solar-cells for which the plasmonic properties of the metal NPs play a major role. This work investigates the first stages of the formation of gold NPs by thermal annealing of Au-doped TiO2 thin films grown by magnetron sputtering. A low concentration of gold in the films is considered (5 at.%) in order to study the first stages of the formation of the NPs. Raman spectroscopy is used to follow the crystallization of TiO2 when increasing the annealing temperature. In addition, low-frequency Raman scattering (LFRS) is u…

Materials scienceNanocompositeAnnealing (metallurgy)Metals and AlloysNanoparticleNanotechnologySurfaces and InterfacesSputter depositionSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeChemical engineeringTransmission electron microscopyMaterials ChemistrysymbolsThin filmRaman spectroscopyRaman scatteringThin Solid Films
researchProduct

TiO2 anatase films obtained by direct liquid injection atomic layer deposition at low temperature

2014

International audience; TiO2 thin films were grown by direct liquid injection atomic layer deposition (DLI-ALD) with infrared rapid thermal heating using titanium tetraisopropoxide and water as precursors. This titanium tetraisopropoxide/water process exhibited a growth rate of 0.018 nm/cycle in a self-limited ALD growth mode at 280 degrees C. Scanning electron microscopy and atomic force microscopy analyses have shown a smooth surface with a low roughness. XPS results demonstrated that the films were pure and close to the TiO2 stoichiometric composition in depth. Raman spectroscopy revealed that the films were crystallized to the anatase structure in the as-deposited state at low temperatu…

AnataseMaterials scienceScanning electron microscope[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Analytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencessymbols.namesakeAtomic layer depositionX-ray photoelectron spectroscopyThin filmSurfaces and InterfacesGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsTitanium oxidechemistry[ CHIM.MATE ] Chemical Sciences/Material chemistrysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyTitanium
researchProduct

Infrared Spectroscopy of Ruthenium Tetroxide and High-resolution analysis of the v3 band

2015

International audience

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th][PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th][PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Isotopic shiftRuthenium TetroxideHigh resolution FTIR spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ComputingMilieux_MISCELLANEOUSSimulation
researchProduct

Sensing ruthenium tetroxide Emissions : a spectroscopic study

2015

International audience; After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into a gaseous form RuO$_4$. To monitor the presence of RuO4 allows making a diagnosis of the core degradation and quantifying the potential release into the atmosphere. RuO$_4$ is of prime importance since it can have a significant radiological impact…

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th][PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th][PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]
researchProduct

On-line measurements of RuO$_4$ during a PWR severe accident

2015

International audience; After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO$_4$ is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO$_4$, which is not trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO$_4…

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th][PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th][PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]TetroxideHigh resolution FTIR spectroscopyFission product[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Severe accidentRuthenium
researchProduct