The Poincaré inequality is an open ended condition
Let p > 1 and let (X,d,µ) be a complete metric measure space with µ Borel and doubling that admits a (1,p)-Poincare inequality. Then there exists e > 0 such that (X,d,µ) admits a (1,q)-Poincare inequality for every q > p - e, quantitatively.