Pressure-induced order–disorder transitions in β-In2S3: an experimental and theoretical study of structural and vibrational properties
This joint experimental and theoretical study of the structural and vibrational properties of β-In2S3 upon compression shows that this tetragonal defect spinel undergoes two reversible pressure-induced order-disorder transitions up to 20 GPa. We propose that the first high-pressure phase above 5.0 GPa has the cubic defect spinel structure of α-In2S3 and the second high-pressure phase (ϕ-In2S3) above 10.5 GPa has a defect α-NaFeO2-type (R3m) structure. This phase, related to the NaCl structure, has not been previously observed in spinels under compression and is related to both the tetradymite structure of topological insulators and to the defect LiTiO2 phase observed at high pressure in oth…