0000000000994176

AUTHOR

Thomas D. Russell

0000-0002-7930-2276

showing 2 related works from this author

Prolonged sub-luminous state of the new transitional pulsar candidate CXOU J110926.4-650224

2019

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4-650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of $\sim$20.1 (3300-10500 $\require{mediawiki-texvc} \AA$). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3-79 keV) spectrum was adequately described by an absorbed power law model with…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstrophysicsMethods: Data analysiAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesLuminosityAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaPulsarMethods: Observational0103 physical sciencesEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsStars: neutronX-rays: Individuals: CXOU J110926.4-650224Neutron star13. Climate actionSpace and Planetary ScienceMagnitude (astronomy)Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model

2021

X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in th…

X-rays: AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesX-rays: Accretion disksSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesThick disk010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Accretion (meteorology)010308 nuclear & particles physicsaccretion disksAstronomy and AstrophysicsRadiusX-rays: individuals: MAXI J1820+070CoronaBlack holeISM: jets and outflowsSpace and Planetary ScienceReflection (physics)Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct