0000000000994176

AUTHOR

Thomas D. Russell

0000-0002-7930-2276

Prolonged sub-luminous state of the new transitional pulsar candidate CXOU J110926.4-650224

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4-650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of $\sim$20.1 (3300-10500 $\require{mediawiki-texvc} \AA$). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3-79 keV) spectrum was adequately described by an absorbed power law model with…

research product

Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model

X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in th…

research product