Verification of Web traffic burstiness and self-similarity for multiple online stores
Developing realistic Web traffic models is essential for a reliable Web server performance evaluation. Very significant Web traffic properties that have been identified so far include burstiness and self-similarity. Very few relevant studies have been devoted to e-commerce traffic, however. In this paper, we investigate burstiness and self-similarity factors for seven different online stores using their access log data. Our findings show that both features are present in all the analyzed e-commerce datasets. Furthermore, a strong correlation of the Hurst parameter with the average request arrival rate was discovered (0.94). Estimates of the Hurst parameter for the Web traffic in the online …