0000000000994595
AUTHOR
Marina Madonia
A generalization of Sardinas and Patterson's algorithm to z-codes
Abstract This paper concerns the framework of z-codes theory. The main contribution consists in an extension of the algorithm of Sardinas and Patterson for deciding whether a finite set of words X is a z-code. To improve the efficiency of this test we have found a tight upper bound on the length of the shortest words that might have a double z-factorization over X. Some remarks on the complexity of the algorithm are also given. Moreover, a slight modification of this algorithm allows us to compute the z-deciphering delay of X.
Iterative pairs and multitape automata
In this paper we prove that if every iterative k-tuple of a language L recognized by a k-tape automaton is very degenerate, then L is recognizable. Moreover, we prove that if L is an aperiodic langnage recognized by a deterministic k-tape automaton, then L is recognizable.
Some decisional problems on rational relations
Abstract In this paper we prove that the problem of deciding whether a deterministic rational relation is star-free is recursively solvable, although the same problem for any rational relation is undecidable. We also prove that a rational relation is star-free if and only if it is aperiodic and deterministic.