A generalization of Sardinas and Patterson's algorithm to z-codes
Abstract This paper concerns the framework of z-codes theory. The main contribution consists in an extension of the algorithm of Sardinas and Patterson for deciding whether a finite set of words X is a z-code. To improve the efficiency of this test we have found a tight upper bound on the length of the shortest words that might have a double z-factorization over X. Some remarks on the complexity of the algorithm are also given. Moreover, a slight modification of this algorithm allows us to compute the z-deciphering delay of X.