Binding isotope effects as a tool for distinguishing hydrophobic and hydrophilic binding sites of HIV-1 RT.
The current treatment for HIV-1 infected patients consists of a cocktail of inhibitors, in an attempt to improve the potency of the drugs by adding the possible effects of each supplied compound. In this contribution, nine different inhibitors of HIV-1 RT, one of the three key proteins responsible for the virus replication, have been selected to develop and test a computational protocol that allows getting a deep insight into the inhibitors’ binding mechanism. The interaction between the inhibitors and the protein have been quantified by computing binding free energies through FEP calculations, while a more detailed characterization of the kind of inhibitor–protein interactions is based on …
Extending Limits of Chlorine Kinetic Isotope Effects
Chlorine kinetic isotope effects exceeding semiclassical limits were observed in enzyme-catalyzed reactions, but their source has not been yet identified. Herein we show that unusually large chlorine kinetic isotope effects are associated with reactions in which chlorine is the central atom that is being passed between two heavy atoms. The origin of these large values is the ratio of imaginary frequencies for light-to-heavy species (the so-called temperature-independent factor).