0000000000994618
AUTHOR
José Luis Jaramillo
Horizons in a binary black hole merger II: Fluxes, multipole moments and stability
We study in detail the dynamics and stability of marginally trapped surfaces during a binary black hole merger. This is the second in a two-part study. The first part studied the basic geometric aspects of the world tubes traced out by the marginal surfaces and the status of the area increase law. Here we continue and study the dynamics of the horizons during the merger, again for the head-on collision of two non-spinning black holes. In particular we follow the spectrum of the stability operator during the course of the merger for all the horizons present in the problem and implement systematic spectrum statistics for its analysis. We also study more physical aspects of the merger, namely …
Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality
Black hole spectroscopy is a powerful tool to probe the Kerr nature of astrophysical compact objects and their environment. The observation of multiple ringdown modes in gravitational waveforms could soon lead to high-precision gravitational spectroscopy, so it is critical to understand if the quasinormal mode spectrum is stable against perturbations. It was recently shown that the pseudospectrum can shed light on the spectral stability of black hole quasinormal modes. We study the pseudospectrum of Reissner-Nordstr\"om spacetimes and we find a spectral instability of scalar and gravitoelectric quasinormal modes in subextremal and extremal black holes, extending similar findings for the Sch…
Pseudospectrum and Black Hole Quasinormal Mode Instability
We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospec…
Painlevé-II approach to binary black hole merger dynamics: universality from integrability
The binary black hole merger waveform is both simple and universal. Adopting an effective asymptotic description of the dynamics, we aim at accounting for such universality in terms of underlying (effective) integrable structures. More specifically, under a ``wave-mean flow'' perspective, we propose that fast degrees of freedom corresponding to the observed waveform would be subject to effective linear dynamics, propagating on a slowly evolving background subject to (effective) non-linear integrable dynamics. The Painlevé property of the latter would be implemented in terms of the so-called Painlevé-II transcendent, providing a structural link between i) orbital (in particular, EMRI) dynami…
Exposition : René Lagrange
Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue
Uniqueness problems in the elliptic sector of constrained formulations of Einstein equations have a dramatic effect on the physical validity of some numerical solutions, for instance when calculating the spacetime of very compact stars or nascent black holes. The fully constrained formulation (FCF) proposed by Bonazzola, Gourgoulhon, Grandcl\'ement, and Novak is one of these formulations. It contains, as a particular case, the approximation of the conformal flatness condition (CFC) which, in the last ten years, has been used in many astrophysical applications. The elliptic part of the FCF basically shares the same differential operators as the elliptic equations in CFC scheme. We present he…
Mathematical Issues in a Fully-Constrained Formulation of Einstein Equations
Bonazzola, Gourgoulhon, Grandcl\'ement, and Novak [Phys. Rev. D {\bf 70}, 104007 (2004)] proposed a new formulation for 3+1 numerical relativity. Einstein equations result, according to that formalism, in a coupled elliptic-hyperbolic system. We have carried out a preliminary analysis of the mathematical structure of that system, in particular focusing on the equations governing the evolution for the deviation of a conformal metric from a flat fiducial one. The choice of a Dirac's gauge for the spatial coordinates guarantees the mathematical characterization of that system as a (strongly) hyperbolic system of conservation laws. In the presence of boundaries, this characterization also depen…
Horizons in a binary black hole merger I: Geometry and area increase
Recent advances in numerical relativity have revealed how marginally trapped surfaces behave when black holes merge. It is now known that interesting topological features emerge during the merger, and marginally trapped surfaces can have self-intersections. This paper presents the most detailed study yet of the physical and geometric aspects of this scenario. For the case of a head-on collision of non-spinning black holes, we study in detail the world tube formed by the evolution of marginally trapped surfaces. In the first of this two-part study, we focus on geometrical properties of the dynamical horizons, i.e. the world tube traced out by the time evolution of marginally outer trapped su…
Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case
We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions, in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordstr\"om. The discussion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyperboloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients in the expansion of the solution in te…
Airy-function approach to binary black hole merger waveforms: The fold-caustic diffraction model
From numerical simulations of the Einstein equations, and also from gravitational wave observations, the gravitational wave signal from a binary black hole merger is seen to be simple and to possess certain universal features. The simplicity is somewhat surprising given that non-linearities of general relativity are thought to play an important role at the merger. The universal features include an increasing amplitude as we approach the merger, where transition from an oscillatory to a damped regime occurs in a pattern apparently oblivious to the initial conditions. We propose an Airy-function pattern to model the binary black hole (BBH) merger waveform, focusing on accounting for its simpl…
A Weyl's law for black holes
We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could …
Trapping Horizons as inner boundary conditions for black hole spacetimes
We present a set of inner boundary conditions for the numerical construction of dynamical black hole space-times, when employing a 3+1 constrained evolution scheme and an excision technique. These inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner boundary conditions for the radiative modes.