0000000000998938
AUTHOR
José J. Alcaina
Thermoelectric Heat Exchange and Growth Regulation in a Continuous Yeast Culture
We have designed a thermoelectric heat exchanger (TEHE) for microbial fermentations that is able to produce electric power from a microbial continuous culture using the intrinsic heat generated by microbial growth. While the TEHE was connected, the system proved able to stably self-maintain both the temperature and the optical density of the culture. This paves the way toward a more sustainable operation of microbial fermentations, in which energy could be saved by converting part of the metabolic heat into usable electric power.
Towards light-mediated sensing of bacterial comfort
Abstract Bacterial comfort is central to biotechnological applications. Here, we report the characterization of different sensoring systems, the first step within a broader synthetic biology-inspired light-mediated strategy to determine Escherichia coli perception of environmental factors critical to bacterial performance. We did so by directly ‘asking’ bacterial cultures with light-encoded questions corresponding to the excitation wavelength of fluorescent proteins placed under the control of environment-sensitive promoters. We built four genetic constructions with fluorescent proteins responding to glucose, temperature, oxygen and nitrogen; and a fifth construction allowing UV-induced exp…