0000000000999150
AUTHOR
Michael Lavine
An overview of robust Bayesian analysis
Robust Bayesian analysis is the study of the sensitivity of Bayesian answers to uncertain inputs. This paper seeks to provide an overview of the subject, one that is accessible to statisticians outside the field. Recent developments in the area are also reviewed, though with very uneven emphasis. © 1994 SEIO.
Exploring regression structure with graphics
We investigate the extent to which it may be possible to carry out a regression analysis using graphics alone, an idea that we refer to asgraphical regression. The limitations of this idea are explored. It is shown that graphical regression is theoretically possible with essentially no constraints on the conditional distribution of the response given the predictors, but with some conditions on marginal distribution of the predictors. Dimension reduction subspaces and added variable plots play a central role in the development. The possibility of useful methodology is explored through two examples.