Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian
Understanding the robustness of topological phases of matter in the presence of interactions poses a difficult challenge in modern condensed matter, showing interesting connections to high energy physics. In this work, we leverage these connections to present a complete analysis of the continuum long-wavelength description of a generic class of correlated topological insulators: Wilson-Hubbard topological matter. We show that a Wilsonian renormalization group (RG) approach, combined with the so-called topological Hamiltonian, provide a quantitative route to understand interaction-induced topological phase transitions that occur in Wilson-Hubbard matter. We benchmark two-loop RG predictions …