0000000001001109

AUTHOR

Michael Carley

Adaptive BEM for Low Noise Propeller Design

A potential-based Boundary Element Method is presented for the aerodynamic and acoustic design of propel- lers at on- and off-design point conditions. Using an adaptive method, a family of airfoil sections is selected to produce the required performance (thrust, torque and efficiency versus advance ratio) at different cruise flight levels. Climb condi- tions are also considered in order to check the off-design point performance. Once the available airfoil data have been stored in a database, the code processes the families of airfoils to generate a complete geometry for a propeller of the specified performance with an optimized noise emission. The computational scheme adjusts the blade geom…

research product

A PROCEDURE FOR THE EVALUATION OF INSTALLED PROPELLER NOISE

Abstract A method for the prediction of the acoustics of a propeller in the flow-field of a wing is presented. The method is used to study the noise generated by the unsteady loading induced on the propeller as it passes through the wing flow-field. Both the aerodynamic and acoustic methods are previously proven techniques, the aerodynamic method being based on a combination of free wake analysis and a three-dimensional boundary element method, while the acoustic calculation is a full-surface, moving medium form of the Ffowcs Williams–Hawkings equation. Calculations are presented for a reference case of a four-bladed low-speed propeller in forward flight. The acoustic predictions are supple…

research product