Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling
We systematically investigate the perpendicular magnetocrystalline anisotropy (MCA) in $\mathrm{Co}\ensuremath{-}\mathrm{Pt}/\mathrm{Pd}$-based multilayers. Our magnetic measurement data show that the asymmetric Co/Pd/Pt multilayer has a significantly larger perpendicular magnetic anisotropy (PMA) energy compared to the symmetric Co/Pt and Co/Pd multilayer samples. We further support this experiment by first-principles calculations on ${\mathrm{CoPt}}_{2}, {\mathrm{CoPd}}_{2}$, and CoPtPd, which are composite bulk materials that consist of three atomic layers in a unit cell, Pt/Co/Pt, Pd/Co/Pd, and Pt/Co/Pd, respectively. By estimating the contribution of bulk spin-momentum coupling to the …