0000000001001376

AUTHOR

Scott Wills

Multimodal Mean Adaptive Backgrounding for Embedded Real-Time Video Surveillance

Automated video surveillance applications require accurate separation of foreground and background image content. Cost sensitive embedded platforms place realtime performance and efficiency demands on techniques to accomplish this task. In this paper we evaluate pixel-level foreground extraction techniques for a low cost integrated surveillance system. We introduce a new adaptive technique, multimodal mean (MM), which balances accuracy, performance, and efficiency to meet embedded system requirements. Our evaluation compares several pixel-level foreground extraction techniques in terms of their computation and storage requirements, and functional accuracy for three representative video sequ…

research product

Midground Object Detection in Real World Video Scenes,

Traditional video scene analysis depends on accurate background modeling to identify salient foreground objects. However, in many important surveillance applications, saliency is defined by the appearance of a new non-ephemeral object that is between the foreground and background. This midground realm is defined by a temporal window following the object's appearance; but it also depends on adaptive background modeling to allow detection with scene variations (e.g., occlusion, small illumination changes). The human visual system is ill-suited for midground detection. For example, when surveying a busy airline terminal, it is difficult (but important) to detect an unattended bag which appears…

research product

The impact of grain size on the efficiency of embedded SIMD image processing architectures

Pixel-per-processing element (PPE) ratio-the amount of image data directly mapped to each processing element-has a significant impact on the area and energy efficiency of embedded SIMD architectures for image processing applications. This paper quantitatively evaluates the impact of PPE ratio on system performance and efficiency for focal-plane SIMD image processing architectures by comparing throughput, area efficiency, and energy efficiency for a range of common application kernels using architectural and workload simulation. While the impact of grain size is affected by the mix of executed instructions within an application program, the most efficient PPE ratio often does not occur at PE…

research product

Embedded Real-Time Surveillance Using Multimodal Mean Background Modeling

Automated video surveillance applications require accurate separation of foreground and background image content. Cost-sensitive embedded platforms place real-time performance and efficiency demands on techniques to accomplish this task. In this chapter, we evaluate pixel-level foreground extraction techniques for a low-cost integrated surveillance system. We introduce a new adaptive background modeling technique, multimodal mean (MM), which balances accuracy, performance, and efficiency to meet embedded system requirements. Our evaluation compares several pixel-level foreground extraction techniques in terms of their computation and storage requirements, and functional accuracy for three r…

research product