0000000001001417

AUTHOR

Dieter H. Hartmann

showing 7 related works from this author

The MEGA Project for Medium Energy Gamma-ray Astronomy

2006

The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4–50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA records and images gamma rays by complet…

PhysicsCOSMIC cancer databaseAstrophysics::High Energy Astrophysical PhenomenaCompton telescopemedia_common.quotation_subjectAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGamma-ray astronomyAstrophysicslaw.inventionTelescopeSupernovaSpace and Planetary ScienceObservatorySkylawAstrophysics::Galaxy Astrophysicsmedia_commonChinese Journal of Astronomy and Astrophysics
researchProduct

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

2018

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the…

Cherenkov Telescope ArrayHigh-energy astrophysical phenomenaCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomyenergy resolution7. Clean energy01 natural sciencesSpace missionlaw.inventionIceCubeEinstein TelescopelawObservatoryLIGO010303 astronomy & astrophysicsKM3NeTPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Applied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionGamma-ray astronomyGamma-ray polarizationCondensed Matter Physicsphoton: energyobservatoryNuclear astrophysicsApace missionAstrophysics - High Energy Astrophysical Phenomenaperformancedetector: technologyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstspace missionCompton and pair creation telescopeTelescope0103 physical sciencessupernovaElectroniccalorimetergamma ray: detectorOptical and Magnetic MaterialsKAGRAElectrical and Electronic Engineering010306 general physicsTime domain astronomyLISAGamma-ray astronomyEinstein TelescopeAstronomyInstitut für Physik und AstronomieTime-domain astronomyCherenkov Telescope ArraysensitivityLIGOmessengerKM3NeTVIRGO13. Climate actionCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineeringddc:520galaxyCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic Engineering[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Discovery and Identification of MAXI J1621-501 as a Type I X-Ray Burster with a Super-orbital Period

2019

MAXI J1621-501 is the first Swift/XRT Deep Galactic Plane Survey transient that was followed up with a multitude of space missions (NuSTAR, Swift, Chandra, NICER, INTEGRAL, and MAXI) and ground-based observatories (Gemini, IRSF, and ATCA). The source was discovered with MAXI on 2017 October 19 as a new, unidentified transient. Further observations with NuSTAR revealed 2 Type I X-ray bursts, identifying MAXI J1621-501 as a Low Mass X-ray Binary (LMXB) with a neutron star primary. Overall, 24 Type I bursts were detected from the source during a 15 month period. At energies below 10 keV, the source spectrum was best fit with three components: an absorbed blackbody with kT = 2.3 keV, a cutoff p…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010504 meteorology & atmospheric sciencesX-ray bursterX-ray transient sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGalactic planeX-ray bursterLight curveOrbital period01 natural sciencesLow-mass X-ray binary starNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesRadiative transferEmission spectrumLow MassAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesAstrophysical Journal
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

MEGA: a medium-energy gamma-ray astronomy mission concept

2005

The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4 - 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL, and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include, among other things, compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse…

PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaCompton telescopeAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomyAstrophysicsGamma-ray astronomyScintillatorlaw.inventionTelescopePair productionlawObservatorySPIE Proceedings
researchProduct

Dense matter with eXTP

2019

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

GAMMA-RAY PULSARSdense matterAstrophysics::High Energy Astrophysical PhenomenaPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsNeutronBRIGHTNESS OSCILLATIONS7. Clean energy01 natural sciencesINNER ACCRETION DISKSSpectral lineX-raydense matter; equation of state; neutron; X-rays; Physics and Astronomy (all)Physics and Astronomy (all)Equacions d'estatneutronPulsar0103 physical sciencesMILLISECOND PULSARSX-raysNEUTRON-STARRADIUS CONSTRAINTS010306 general physics010303 astronomy & astrophysicsRELATIVISTIC IRON LINEequation of statePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)LIGHT CURVESNeutronsEquation of stateQUASI-PERIODIC OSCILLATIONSX-RaysStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsEQUATION-OF-STATEAccretion (astrophysics)Neutron star:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Raigs XAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaDense matterDense matter
researchProduct

ORIGIN: metal creation and evolution from the cosmic dawn

2012

Herder, Jan-Willem den et al.

HOT INTERGALACTIC MEDIUMUNIVERSEChemical evolutionMission7. Clean energy01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisica010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NUCLEOSYNTHESISCOSMIC cancer databaseClusters of galaxiesSatellite MissionEpoch (reference date)Astrophysics::Instrumentation and Methods for AstrophysicsFORESTGALAXIESGamma-ray burstsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray Mission Gamma-ray bursts Clusters of galaxies Warm-hot intergalactic medium Chemical evolutionWarm-hot intergalactic mediumAstrophysics - Cosmology and Nongalactic AstrophysicsAstrophysics and AstronomyStructure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)Clusters of galaxiemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsX-ray Mission Gamma-ray bursts Clusters of galaxies Warm-hot intergalactic medium Chemical evolutionABSORPTION-SPECTRA010309 opticsX-rayYIELDS0103 physical sciencesGamma-ray burstInstrumentation and Methods for Astrophysics (astro-ph.IM)X-ray; Mission; Gamma-ray bursts; Clusters of galaxies; Warm-hot intergalactic medium; Chemical evolutionAstronomyAstronomy and AstrophysicsRedshiftGalaxyUniverse13. Climate actionChemical evolution; Clusters of galaxies; Gamma-ray bursts; Mission; Warm-hot intergalactic medium; X-ray; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary ScienceGamma-ray burstCLUSTERSExperimental Astronomy
researchProduct