6533b824fe1ef96bd1280191

RESEARCH PRODUCT

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

Koji NakazawaF. LongoA. BrognaAndrei M. BykovJ. PeyréJ. M. ParedesA. A. ZdziarskiM. HernanzD. De MartinoPaolo De CoppiIrfan KuvvetliM. RoncadelliI. DonnarummaA. De AngelisI. GrenierB. PatricelliVincent TatischeffG. PianoMarco TavaniElisa BernardiniM. PohlS. CipriniCarl Budtz-jørgensenMarco AjelloP. Von BallmoosJ. KienerD. J. ThompsonPhilippe LaurentA. AboudanJürgen KnödlsederP. CumaniMiriam Lucio MartinezLorraine HanlonStefan FunkMichele DoroMartino MarisaldiJ. E. GroveR. RandoGabriele GhiselliniR. M. Curado Da SilvaA. A. MoiseevV. BonviciniFabrizio TavecchioJulie MceneryGottfried KanbachA. ArganMark D. LeisingRoland DiehlO. LimousinAndrea BulgarelliManuela MallamaciM. CardilloM. BranchesiXin WuA. MorselliSandro MereghettiMark PearceR. TurollaG. MinerviniR. WalterC. HamadacheDieter H. HartmannValentina FiorettiPiotr OrleanskiA. VacchiA. UlyanovG. AmbrosiKarl MannheimFerdinando GiordanoD. BernardN. M. MazziottaRiccardo CampanaUwe OberlackJordi IsernM. HayashidaAndreas ZoglauerClaudio Labanti

subject

Cherenkov Telescope ArrayHigh-energy astrophysical phenomenaCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomyenergy resolution7. Clean energy01 natural sciencesSpace missionlaw.inventionIceCubeEinstein TelescopelawObservatoryLIGO010303 astronomy & astrophysicsKM3NeTPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Applied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionGamma-ray astronomyGamma-ray polarizationCondensed Matter Physicsphoton: energyobservatoryNuclear astrophysicsApace missionAstrophysics - High Energy Astrophysical Phenomenaperformancedetector: technologyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstspace missionCompton and pair creation telescopeTelescope0103 physical sciencessupernovaElectroniccalorimetergamma ray: detectorOptical and Magnetic MaterialsKAGRAElectrical and Electronic Engineering010306 general physicsTime domain astronomyLISAGamma-ray astronomyEinstein TelescopeAstronomyInstitut für Physik und AstronomieTime-domain astronomyCherenkov Telescope ArraysensitivityLIGOmessengerKM3NeTVIRGO13. Climate actionCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineeringddc:520galaxyCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic Engineering[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]

description

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.

10.1117/12.2315151https://orbit.dtu.dk/en/publications/ef486e15-6a10-4cf1-baf0-a73d7c9ffd38