0000000000173962

AUTHOR

G. Ambrosi

showing 12 related works from this author

In-flight performance of the DAMPE silicon tracker

2018

Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGamma rayDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energyOptics0103 physical sciencesDark matterNeutron detection010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysInstrumentationNuclear and High Energy PhysicAstroparticle physicsPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma raysGamma rayInstrumentation and Detectors (physics.ins-det)Cosmic raySpaceborne experimentSilicon trackerHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsbusinessCosmic rays; Dark matter; Gamma rays; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; Instrumentation
researchProduct

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

The on-orbit calibration of DArk Matter Particle Explorer

2019

Abstract The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesNeutron detectionDark MatterInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCalorimeter (particle physics)010308 nuclear & particles physicsDetectorSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyAstronomy and AstrophysicsCosmic RaysSouth Atlantic AnomalyHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A charge reconstruction algorithm for DAMPE silicon microstrip detectors

2019

Abstract The DArk Matter Particle Explorer (DAMPE) can detect electrons and photons from 5 GeV to 10 TeV and charged nuclei from a few tens of GeV to 100 TeV. The silicon–tungstentracker (STK), which is composed of 768 singled-sided silicon microstrip detectors, is one of four subdetectors in DAMPE providing photon conversion , track reconstruction, and charge identification for relativistic charged particles. This paper focuses on the charge identification performance of the STK detector. The charge response depends mainly on the incident angle and the impact position of the incoming particle. To improve the charge resolution, a reconstruction algorithm to correct for these parameters was …

PhysicsNuclear and High Energy PhysicsPhotonLarge Hadron ColliderIon beamPhysics::Instrumentation and Detectors010308 nuclear & particles physicsCharge reconstructionSTKSettore FIS/01 - Fisica SperimentaleReconstruction algorithmElectron01 natural sciencesCharged particleCharge sharingIonNuclear physicsSilicon microstrip detector0103 physical sciencesDAMPEHigh Energy Physics::ExperimentCharge sharing010303 astronomy & astrophysicsInstrumentation
researchProduct

Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

2017

Abstract The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon–tungsten tracker–converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron–positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m 2 . Silicon planes are interleaved with three layers of tungsten plates, resulting in about o…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonSiliconProtonPhysics::Instrumentation and DetectorsAlignment; Cosmic-ray detectors; Gamma-ray telescopes; Silicon-strip detectors; Nuclear and High Energy Physics; InstrumentationGamma-ray telescopesAstrophysics::High Energy Astrophysical PhenomenaCosmic-ray detectorsFOS: Physical scienceschemistry.chemical_elementElectron01 natural sciencesSilicon-strip detectorRadiation lengthParticle detectorOptics0103 physical sciences010303 astronomy & astrophysicsInstrumentationImage resolutionNuclear and High Energy PhysicAlignmentPhysicsRange (particle radiation)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)Cosmic-ray detectorSilicon-strip detectorschemistryGamma-ray telescopeHigh Energy Physics::ExperimentbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

2017

High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the …

Astrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesdark matterHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Positroncosmic rays0103 physical sciences010303 astronomy & astrophysicsCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic rays dark matter electrons space experimentsMultidisciplinaryAnnihilation010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectrum (functional analysis)electronsGalaxyHigh Energy Physics - PhenomenologyHigh Energy Physics::Experimentspace experimentsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

2018

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the…

Cherenkov Telescope ArrayHigh-energy astrophysical phenomenaCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomyenergy resolution7. Clean energy01 natural sciencesSpace missionlaw.inventionIceCubeEinstein TelescopelawObservatoryLIGO010303 astronomy & astrophysicsKM3NeTPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Applied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionGamma-ray astronomyGamma-ray polarizationCondensed Matter Physicsphoton: energyobservatoryNuclear astrophysicsApace missionAstrophysics - High Energy Astrophysical Phenomenaperformancedetector: technologyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstspace missionCompton and pair creation telescopeTelescope0103 physical sciencessupernovaElectroniccalorimetergamma ray: detectorOptical and Magnetic MaterialsKAGRAElectrical and Electronic Engineering010306 general physicsTime domain astronomyLISAGamma-ray astronomyEinstein TelescopeAstronomyInstitut für Physik und AstronomieTime-domain astronomyCherenkov Telescope ArraysensitivityLIGOmessengerKM3NeTVIRGO13. Climate actionCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineeringddc:520galaxyCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic Engineering[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The DAMPE silicon–tungsten tracker

2016

Abstract The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. T…

Nuclear and High Energy PhysicsCosmic rays; Dark matter; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; InstrumentationPhysics::Instrumentation and DetectorsCosmic rayParticle detectorsTracking (particle physics)01 natural sciencesParticle detectorOpticscosmic rays0103 physical sciencesDark matterNeutron detection010303 astronomy & astrophysicsInstrumentationAstroparticle physicsPhysicsLarge Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleParticle detectors cosmic raysSpaceborne experimentSilicon trackerHigh Energy Physics::Experimentbusiness
researchProduct

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

2021

Full list of authors: Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Batista, R. Alves; Amati, L.; Amato, E.; Ambrosi, G.; Anguner, E. O.; Araudo, A.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Ashley, M.; Backes, M.; Balazs, C.; Balbo, M.; Balmaverde, B.; Baquero Larriva, A.; Martins, V. Barbosa; Barkov, M.; Baroncelli, L.; de Almeida, U. Barres; Barrio, J. A.; Batista, P-, I; Becerra Gonzalez, J.; Becherini, Y.; Beck, G.; Tjus, J. Becker; Belmont, R.; Benbow, W.; Bernardini, E.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V; Bi, B.; Biasuzzi, B.; Biland, A.; Bissaldi, …

Gamma ray AstronomyCherenkov Telescope ArrayaxionsMATÉRIA ESCURAredshift: dependenceAstronomyGamma ray experimentsgamma ray experimentsAstrophysics01 natural sciencesCosmologyObservatorycosmological model: parameter spacegamma ray experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsCherenkov telescopes ; IACT technique ; Gamma rays ; Cosmic raysnew physics4. EducationSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma-ray astronomyviolation: Lorentz3. Good healthobservatoryExtragalactic background lightastro-ph.COaxion-like particlesFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysicsgamma ray: propagationCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusAxionsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsinvariance: Lorentzjet: relativisticdark matter: halo0103 physical sciencesactive galactic nuclei; gamma ray experiments; axions; extragalactic magnetic fieldsAGNBlazarbackground010308 nuclear & particles physicsFísicaAstronomy and AstrophysicssensitivityCherenkov Telescope Arrayaxionextragalactic magnetic fieldsactive galactic nuclei[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]absorptionstatisticalBlazarsTelescopes
researchProduct

Advances in Technology for High-Energy Subnuclear Physics. Contribution of the LAA Project.

1990

PhysicsHigh energy[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]General Physics and Astronomy010306 general physics01 natural sciencesEngineering physics
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct