0000000000544081

AUTHOR

J. E. Grove

showing 2 related works from this author

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

2018

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the…

Cherenkov Telescope ArrayHigh-energy astrophysical phenomenaCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomyenergy resolution7. Clean energy01 natural sciencesSpace missionlaw.inventionIceCubeEinstein TelescopelawObservatoryLIGO010303 astronomy & astrophysicsKM3NeTPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Applied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionGamma-ray astronomyGamma-ray polarizationCondensed Matter Physicsphoton: energyobservatoryNuclear astrophysicsApace missionAstrophysics - High Energy Astrophysical Phenomenaperformancedetector: technologyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstspace missionCompton and pair creation telescopeTelescope0103 physical sciencessupernovaElectroniccalorimetergamma ray: detectorOptical and Magnetic MaterialsKAGRAElectrical and Electronic Engineering010306 general physicsTime domain astronomyLISAGamma-ray astronomyEinstein TelescopeAstronomyInstitut für Physik und AstronomieTime-domain astronomyCherenkov Telescope ArraysensitivityLIGOmessengerKM3NeTVIRGO13. Climate actionCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineeringddc:520galaxyCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic Engineering[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Gamma-Ray and Radio Observations of PSR B1509-58

1993

Abstract : We report concurrent radio and gamma-ray observations of PSR B1509-58 carried out by the Parkes Radio Telescope and by the Burst and Transient Source Experiment (BATSE) and the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (CGRO-Gamma-ray light curves fitted at several energies between ~ 20-500 keV yield a phase offset with respect to the radio pulse that is independent of energy, with an average value 0.32 plus or minus 0.02. Although this value is larger by 0.07 than that reported by Kawai et al., the difference is not statistically significant (only~2 sigma) when account is taken of the uncertainty associated with their result. We b…

PhysicsScintillationSpectrometerAstrophysics::High Energy Astrophysical PhenomenaGamma rayAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveElectromagnetic radiationRadio telescopePulsarSpace and Planetary ScienceObservatoryThe Astrophysical Journal
researchProduct