0000000001001498
AUTHOR
L. Natalucci
TES microcalorimeter for IXO: From focal plane to anticoincidence detector
The high resolution spectroscopy provides a unique technique to extract fundamental information in X-ray Astrophysics and Cosmology. In order to exploit at the best the capability of carrying out spectroscopy of faint sources, great care must be taken to reduce the background in the main detector. In this paper, we will present the working principle of a TES (Transition Edge Sensor) Microcalorimeter, its application for fine spectroscopy and a novel anticoincidence technique , based itself on a TES detector. Recent results from the first sample of the IXO-anticoincidence detector will be also shown.
Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters
The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA)[1][2][3], requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%) [1]. A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. We present the results of estimations,…
The NHXM observatory
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…
INTEGRAL monitoring of the Black Hole candidate 1E 1740.7-2942
The brightest persistent Galactic black hole candidate close to the Galactic Centre, 1E 1740.7-2942, has long been observed with INTEGRAL. In this paper, we report on the long-term hard X-ray monitoring obtained during the first year of observations as part of the Galactic Centre Deep Exposure. We discuss the temporal and spectral behaviours in different energy bands up to 250 keV, as well as the hardness-flux correlations.
ORIGIN: metal creation and evolution from the cosmic dawn
Herder, Jan-Willem den et al.