0000000001002230
AUTHOR
Michele Bolognesi
Homological Projective Duality for Determinantal Varieties
In this paper we prove Homological Projective Duality for crepant categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a n x m matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi-Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we discuss the relation between rationality and categorical representability in codimension two for determinantal varieties.
The Coble Quadric
Given a smooth genus three curve $C$, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in $\mathbb{P}^8$ as a hypersurface whose singular locus is the Kummer threefold of $C$; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric fourform in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover SU$_C(2, L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2, 8)$. In fact, each point $p \in C$ defines a natural embedding of SU$_C(2, \mathca…