0000000001003355

AUTHOR

H. Hübener

showing 2 related works from this author

Monitoring Electron-Photon Dressing in WSe 2

2016

Optical pumping of solids creates a non-equilibrium electronic structure where electrons and photons combine to form quasiparticles of dressed electronic states. The resulting shift of electronic levels is known as the optical Stark effect, visible as a red shift in the optical spectrum. Here we show that in a pump-probe setup we can uniquely define a non-equilibrium quasiparticle bandstructure that can be directly measurable with photoelectron spectroscopy. The dynamical photon-dressing (and undressing) of the many-body electronic states can be monitored by pump-probe time and angular resolved photoelectron spectroscopy (tr-ARPES) as the photon-dressed bandstructure evolves in time dependi…

Floquet theoryFloquet theoryPhotonphotoelectron spectroscopynonequilibrium bandstructurePhysics::OpticsBioengineering02 engineering and technologyElectronElectronic structure01 natural sciencesSettore FIS/03 - Fisica Della MateriaOptical pumpingsymbols.namesakeFirst-principles calculations0103 physical sciencesGeneral Materials Science010306 general physicsChemistryMechanical Engineeringpump-probe spectroscopyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsStark effectQuasiparticlesymbolsCondensed Matter::Strongly Correlated ElectronsAtomic physics0210 nano-technologyVisible spectrumNano Letters
researchProduct

Generation and Evolution of Spin-, Valley-, and Layer-Polarized Excited Carriers in Inversion-Symmetric WSe2

2016

We report the spin-selective optical excitation of carriers in inversion-symmetric bulk samples of the transition metal dichalcogenide (TMDC) WSe2. Employing time- and angle-resolved photoelectron spectroscopy (trARPES) and complementary time-dependent density functional theory (TDDFT), we observe spin-, valley-, and layer-polarized excited state populations upon excitation with circularly polarized pump pulses, followed by ultrafast ( < 100     fs ) scattering of carriers towards the global minimum of the conduction band. TDDFT reveals the character of the conduction band, into which electrons are initially excited, to be two-dimensional and localized within individual layers, whereas at t…

Condensed Matter - Materials Sciencetr-ARPESCondensed Matter - Mesoscale and Nanoscale PhysicsTDDFT530 PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences10192 Physics Institute2D materialsSettore FIS/03 - Fisica Della Materia3100 General Physics and Astronomy
researchProduct