0000000001003389
AUTHOR
W. Quint
A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio
The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision, which improved upon previous best measurements by a factor of greater than 3,0…
A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as …
Search for new physics in beta-neutrino correlations with the WITCH spectrometer
The WITCH (Weak Interaction Trap for CHarged particles) experiment is a retardation spectrometer coupled to a Penning trap and measures the beta-neutrino angular correlation via the shape of the recoil energy spectrum. The present form of the Standard Model describes weak processes in terms of vector and axial-vector type interactions, but the possible presence of scalar and tensor interactions is not yet ruled out. The main aim of this experiment is a test of the Standard Model for possible admixture of scalar and tensor currents. (C) 2002 Elsevier Science B.V. All rights reserved.
SHIPTRAP—a capture and storage facility for heavy radionuclides at GSI
Abstract SHIPTRAP will be an ion-trap facility for heavy radionuclides delivered from SHIP. Ion traps are a perfect instrument for precision measurements since the ions can be cooled to an extremely small phase space and can be stored for a very long time. In addition one can achieve very high purity by removing contaminant ions. SHIPTRAP will extend the possibilities of measurements in traps to transuranium nuclides and provide cooled and isobarically pure ion bunches.
Testing CPT Invariance by High-Precision Comparisons of Fundamental Properties of Protons and Antiprotons at BASE
The BASE collaboration at the Antiproton Decelerator facility of CERN compares the fundamental properties of protons and antiprotons using advanced Penning-trap systems. In previous measurement campaigns, we measured the magnetic moments of the proton and the antiproton, reaching (sub-)parts-in-a-billion fractional uncertainty. In the latest campaign, we have compared the proton and antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts in a trillion. In this contribution, we give an overview of the measurement campaign, and detail how its results are used to constrain nine spin-independent coefficients of the Standard-Model Extension in the proton and electron sector.