0000000001004852

AUTHOR

Stefania Di Tommaso

Dopant Clusterization and Oxygen Coordination in Ta-Doped Bismuth Oxide: A Structural and Computational Insight into the Mechanism of Anion Conduction

Bi2O3 in its fluorite-like form can be obtained either at 730-824 °C, showing the highest oxide-ion conduction known so far, or by doping. We present a comprehensive appraisal of the local atomic structure of Ta-doped Bi2O3 investigating by X-ray absorption spectroscopy the aggregation motifs of Ta5+ and the interaction between dopants and oxygen vacancies. Using periodic density functional theory simulations, we show that the connection of Ta4O18 aggregates is energetically favorable. We find that the local coordination of Bi3+ and its electronic structure, as seen from the calculated density of states (DOS), are invariably determined by the Bi 6s2 lone pair in both doped and undoped Bi2O3…

research product

Toward tailorable surfaces: a combined theoretical and experimental study of lanthanum niobate layered perovskites.

A comprehensive theoretical investigation of the MLaNb2O7 (M = H, Li, Na, K, Rb, and Cs) series of ion-exchangeable layered perovskite is presented. These perovskites are in particular interesting in view of their potential applications as inorganic supports for the design of new hybrid inorganic-organic proton conductors. In particular, their structural and electronic properties have been investigated by periodic calculations in the framework of Density Functional Theory, using different exchange-correlation functionals. A general very good agreement with the available experimental (XRD, NPD, and EXAFS) data has been found. The structure of the protonated HLaNb2O7 form has also been furthe…

research product

Theoretical insights into inorganic-organic intercalation products of the layered perovskite HLaNb2O7: perspectives for hybrid proton conductors

The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among the inorganic oxides, ion-exchangeable layered perovskites are particularly interesting, because of their appealing electronic and reactive properties. In particular, their protonated interlayer surface can be easily functionalized with organic groups allowing the production of stable hybrid materials. As a further step in the design of new inorganic-organic hybrid proton conductors, a combined experimental and theoretical study of two intercalated compounds (propanol and imidazole) in HLaNb2O7 is presented here. A…

research product

Functionalization of a layered oxide with organic moieties: towards hybrid proton conductors

The design of innovative proton conductors for intermediate-temperature fuel cells, closing the gap between PEMFC and SOFC, is a forefront research theme in materials chemistry. [1] Layered perovskites with the Dion-Jacobson structure (ALaNb2O7) have bidimensional lanthanum niobate sheets, separated by a layer of A+ cations. These can be substituted by a variety of molecules with soft chemistry, to yield inorganic-organic hybrids. In particular, the intercalation of amines, alcohols, carboxylic or phosphonic acids, and their covalent binding to the sheets has been demonstrated recently. [2-4]We present preliminary results on the intercalation and covalent bonding of different organic molecu…

research product

Defect interaction and local structural distortions in Mg-doped LaGaO3: A combined experimental and theoretical study

A combined experimental and theoretical study of Mg-doped LaGaO3 electrolyte was carried out, with the aim to unveil the interaction between oxygen vacancy (Vo) and perovskite B site cations. LaGaO3 (LG) and LaGa0.875Mg0.125O2.938 (LGM0125) samples were comprehensively characterized by X-ray absorption spectroscopy (XAS) and X-ray diffraction, in order to investigate short- and long-range structures of both undoped and Mg-doped materials. XAS analysis evidenced a preferential Ga-Vo interaction in LGM0125, confirmed by periodic hybrid density functional theory calculations, which were combined with a symmetry-independent classes (SICs) approach in order to (a) obtain a detailed picture of th…

research product

Toward a new hybrid proton conductor: lanthanum niobate layered perovskites as a source of tailorable surfaces

The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among inorganic oxides, the ion-exchangeable layered perovskites [1], materials composed by perovskite-like slabs and intercalated cations, stimulated authors’ interest in reason of some encouraging electronic and reactive properties. In particular it is well known that the interlayer surface of such materials in their protonated form can be easily functionalized with organic groups (such as alcohols [2-3] or organophosphonic acids [4]) thus allowing the production of stable hybrid materials with new electronic and react…

research product