0000000001005839
AUTHOR
Bartel Van Waeyenberge
Correlation between spin structure oscillations and domain wall velocities
Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the e…
Correlation between spin structure oscillations and domain wall velocities (presentation video)
Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. We use direct dynamic imaging of the nanoscale spin structure to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes and we show that the extrinsic pinning from defects in the nanowire only affec…
Effect of boundary-induced chirality on magnetic textures in thin films
In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a $C_{\infty v}$ symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Further, we find that the surface twist due to the boundary…
Nanomagnetic Self-Organizing Logic Gates
The end of Moore's law for CMOS technology has prompted the search for low-power computing alternatives, resulting in several promising proposals based on magnetic logic[1-8]. One approach aims at tailoring arrays of nanomagnetic islands in which the magnetostatic interactions constrain the equilibrium orientation of the magnetization to embed logical functionalities[9-12]. Despite the realization of several proofs of concepts of such nanomagnetic logic[13-15], it is still unclear what the advantages are compared to the widespread CMOS designs, due to their need for clocking[16, 17] and/or thermal annealing [18,19] for which fast convergence to the ground state is not guaranteed. In fact, i…
Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect.
We present a combined theoretical and experimental study, investigating the origin of the enhanced non-adiabaticity of magnetic vortex cores. Scanning transmission X-ray microscopy is used to image the vortex core gyration dynamically to measure the non-adiabaticity with high precision, including a high confidence upper bound. Using both numerical computations and analytical derivations, we show that the large non-adiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture-induced emergent Hall effect. This enhanced non-adiabaticity is only present in two- and three-dimensional magnetic textures such as vortices and skyrmions…
Dynamic domain wall chirality rectification by rotating magnetic fields
Dynamic domain wall chirality rectification by rotating magnetic fields
We report on the observation of magnetic vortex domain wall chirality reversal in ferromagnetic rings that is controlled by the sense of rotation of a magnetic field. We use time-resolved X-ray microscopy to dynamically image the chirality-switching process and perform micromagnetic simulations to deduce the switching details from time-resolved snapshots. We find experimentally that the switching occurs within less than 4 ns and is observed in all samples with ring widths ranging from 0.5 μm to 2 μm, ring diameters between 2 μm and 5 μm, and a thickness of 30 nm, where a vortex domain wall is present in the magnetic onion state of the ring. From the magnetic contrast in the time-resolved im…