0000000001006205
AUTHOR
Mathias Kl��ui
Anisotropic skyrmion diffusion controlled by field-induced symmetry breaking
Diffusion of particles has wide repercussions ranging from particle-based soft matter systems to solid state systems with particular electronic properties. Recently, in the field of magnetism, diffusion of magnetic skyrmions, topologically stabilized quasi-particles, has been demonstrated. Here we show that by applying a magnetic in-plane field and therefore breaking the symmetry of the system, the skyrmion diffusion becomes anisotropic with faster diffusion parallel to the field axis and slower diffusion perpendicular to it. We furthermore show that the absolute value of the applied field controls the absolute values of the diffusion coefficients so that one can thereby uniquely tune both …
Origin of the spin Seebeck effect probed by temperature dependent measurements in Gd$_{3}$Fe$_{5}$O$_{12}$
We probe the spin Seebeck effect in Gd$_{3}$Fe$_{5}$O$_{12}$/Pt hybrid structures as a function of temperature and observe two sign changes of the spin Seebeck signal with decreasing temperature. A first sign change occurs at a temperature close to the Gd$_{3}$Fe$_{5}$O$_{12}$ magnetic compensation point at around 280 K. There the spin Seebeck signal changes sign abruptly with unaltered amplitude, indicating that the spin current is mainly caused by the magnetic Fe sub-lattices, which reorient their directions at this temperature. A second, more gradual sign change takes place around the ordering temperature of the Gd sub-lattice in the range of 65-85 K, showing that the Gd magnetic sub-lat…
Ferroic collinear multilayer magnon spin valve
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current driven spintronic devices. The absence of Joule heating as well as the reduced spin wave damping in insulating ferromagnets has been suggested to enable the implementation of efficient logic devices. After the proof of concept for a logic majority gate based on the superposition of spin waves has been successfully demonstrated, further components are required to perform complex logic operations. A key component is a switch that corresponds to a conventional magnetoresistive spin valve. Here, we report on magnetization orientation dependent spin signal d…
Determination of the origin of the spin Seebeck effect - bulk vs. interface effects
The observation of the spin Seebeck effect in insulators has meant a breakthrough for spin caloritronics due to the unique ability to generate pure spin currents by thermal excitations in insulating systems without moving charge carriers. Since the recent first observation, the underlying mechanism and the origin of the observed signals have been discussed highly controversially. Here we present a characteristic dependence of the longitudinal spin Seebeck effect amplitude on the thickness of the insulating ferromagnet (YIG). Our measurements show that the observed behavior cannot be explained by any effects originating from the interface, such as magnetic proximity effects in the spin detec…
Simultaneous imaging of strain waves and induced magnetization dynamics at the nanometer scale
Changes in strain can be used to modify electronic and magnetic properties in crystal structures, to manipulate nanoparticles and cells, or to control chemical reactions. The magneto-elastic (ME) effect--the change of magnetic properties caused by the elastic deformation (strain) of a magnetic material--has been proposed as an alternative approach to magnetic fields for the low power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Multiferroic heterostructures \cite{Zheng2004} and nanocomposites have exploited this effect in search of electric control of magnetic states, mostly in the static regime. Quantitative studies combining s…
Turbostratic graphitic microstructures: electronically decoupled multilayer graphene devices with robust high charge carrier mobility
Carbon nanomaterials continue to amaze scientists due to their exceptional physical properties. Recently there have been theoretical predictions and first reports on graphene multilayers, where, due to the rotation of the stacked layers, outstanding electronic properties are retained while the susceptibility to degradation and mechanical stress is strongly reduced due to the multilayer nature. Here we show that fully turbostratic multilayer graphitic microstructures combine the high charge carrier mobilities necessary for advanced electronic and spintronic devices with the robustness of graphitic structures. Structural characterization of disk-shaped graphitic microstructures using Raman sp…
Quantification of competing magnetic states and switching pathways in curved nanowires by direct dynamic imaging
For viable applications, spintronic devices based e.g. on domain wall motion need to be highly reliable with stable magnetization states and highly reproducible switching pathways transforming one state to another. The existence of multiple stable states and switching pathways in a system is a definitive barrier for device operation, yet rare and stochastic events are difficult to detect and understand. We demonstrate an approach to quantify competing magnetic states and stochastic switching pathways based on time-resolved scanning electron microscopy with polarization analysis, applied to the technologically relevant control of vortex domain wall chirality via field and curvature in curved…