Scope and Limitations of Baird's Theory on Triplet State Aromaticity: Application to the Tuning of Singlet–Triplet Energy Gaps in Fulvenes
Utilizing Baird's theory on triplet state aromaticity, we show that the singlet-triplet energy gaps (DeltaE(ST)) of pentafulvenes are easily varied through substitution by as much as 36 kcal mol(-1). This exploits the fact that fulvenes act as aromatic chameleons in which the dipoles reverse on going from the singlet ground state (S(0)) to the lowest pipi* triplet state (T1); thus, their electron distributions are adapted so as to achieve some aromaticity in both states. The results are based on quantum chemical calculations with the OLYP density functional theory method and the CASPT2 ab initio method, as well as spectroscopic determination of DeltaE(ST) by triplet sensitization. The findi…