Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term
Abstract Our aim in this article is to study the following nonlinear elliptic Dirichlet problem: − div [a(x,u)·∇u]+b(x,u,∇u)=f, in Ω; u=0, on ∂Ω; where Ω is a bounded open subset of RN, with N>2, f∈L m (Ω) . Under wide conditions on functions a and b, we prove that there exists a type of solution for this problem; this is a bounded weak solution for m>N/2, and an unbounded entropy solution for N/2>m⩾2N/(N+2). Moreover, we show when this entropy solution is a weak one and when can be taken as test function in the weak formulation. We also study the summability of the solutions.
Existence results for $L^1$ data of some quasi-linear parabolic problems with a quadratic gradient term and source
In this paper we deal with a Cauchy–Dirichlet quasilinear parabolic problem containing a gradient lower order term; namely, ut - Δu + |u|2 γ-2u |∇u|2 = |u|p-2u. We prove that if p ≥ 1, γ ≥ ½ and p < 2 γ + 2, then there exists a global weak solution for all initial data in L1 (Ω). We also see that there exists a non-negative solution if the initial datum is non-negative.
Quasilinear elliptic equations with singular quadratic growth terms
In this paper, we deal with positive solutions for singular quasilinear problems whose model is [Formula: see text] where Ω is a bounded open set of ℝN, g ≥ 0 is a function in some Lebesgue space, and γ > 0. We prove both existence and nonexistence of solutions depending on the value of γ and on the size of g.