0000000001010056
AUTHOR
Efstratios D. Sitsanidis
Tuning protein adsorption on graphene surfaces via laser-induced oxidation
An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence…
Nanoscale probing of the supramolecular assembly in a two‐component gel by near‐field infrared spectroscopy
The design of soft biomaterials requires a deep understanding of molecular self-assembly. We introduce here a nanoscale infrared (IR) spectroscopy study of a two-component supramolecular gel to assess the system´s heterogeneity and supramolecular assembly. In contrast to far-field IR spectroscopy, near-field IR spectroscopy revealed differences in the secondary structures of the gelator molecules and non-covalent interactions at three distinct nano-locations of the gel network. A β-sheet arrangement is dominant in single and parallel fibres with a small proportion of an α-helix present, while the molecular assembly derives from strong hydrogen bonding. However, at the crossing point of two …
Tuning protein adsorption on graphene surfaces via laser-induced oxidation
An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence…
Diversity at the nanoscale : laser-oxidation of single-layer graphene affects Fmoc-phenylalanine surface-mediated self-assembly
We report the effects of a laser-oxidized single layer graphene (SLG) surface on the self-assembly of amphiphilic gelator N-fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-Phe) towards an gel–SLG interface. Laser oxidation modulates the levels of hydrophobicity/hydrophilicity on the SLG surface. Atomic force, scanning electron, helium ion and scattering scanning nearfield optical microscopies (AFM, SEM, HIM, s-SNOM) were employed to assess the effects of surface properties on the secondary and tertiary organization of the formed Fmoc-Phe fibres at the SLG–gel interface. S-SNOM shows sheet-like secondary structures on both hydrophobic/hydrophilic areas of SLG and helical or disordered structu…
Probing the Gelation Synergies and Anti-Escherichia coli Activity of Fmoc-Phenylalanine/Graphene Oxide Hybrid Hydrogel
The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material’s bactericidal activity on Gram…
Triggering a transient organo-gelation system in a chemically active solvent
A transient organo-gelation system with spatiotemporal dynamic properties is described. Here, the solvent actively controls a complex set of equilibria that underpin the dynamic assembly event. The observed metastability is due to the in situ formation of a secondary solvent, acting as an antagonist against the primary solvent of the organogel. peerReviewed