0000000001011510
AUTHOR
Georgii Miroshnichenko
<title>Multiatom microlaser: a stable source of photons with subpoissonian statistics</title>
We studied a multi-atom model of microlaser. As initial conditions we took diagonal density matrix of atoms in the basis of symmetrized collective states. Under diagnonal invariance taking a place for such initial conditions, we considered peculiarities of dynamics of the field reduced density matrix comparing it with the one-atom case. The field possesses subpoissonian distributions in a quasistationare, which are stable with respect to relaxation and number of atoms fluctuations in a packet. When one does not measure the atomic state on output of the cavity, it is possible to observe a macroscopic superposition of few such subpoissonian distributions. Simulating a measuring process of the…
Quantum dynamics of the intensity-dependent Tavis-Cummings model
An exactly solvable generalization of the intensity-dependent Jaynes-Cummings model to the case of N0 atoms is introduced together with its solution. The quantum dynamics of the model including the squeezing properties of the su(1,1) Perelomov and Glauber coherent states is investigated. The cases of one and two atoms present in the cavity are analysed in detail. These two cases are compared in the situation when the atomic subsystem is initially prepared in the ground state, the Dicke state and the state of thermal equilibrium.