0000000001011964

AUTHOR

Andrea Silva Asiain

Predicting critical illness on initial diagnosis of COVID-19 based on easily-obtained clinical variables: Development and validation of the PRIORITY model

ABSTRACTObjectivesCurrently available COVID-19 prognostic models have focused on laboratory and radiological data obtained following admission. However, these tests are not available on initial assessment or in resource-limited settings. We aim to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of COVID-19, to identify patients at risk of critical outcomes.MethodsWe used data from the SEMI-COVID-19 Registry, a nationwide multicenter cohort of consecutive patients hospitalized for COVID-19 from 132 centers in Spain. Clinical signs and symptoms, demographic variables, and medical history ascertained at hospital admission were sc…

research product

Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model

Objectives: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. Methods: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical…

research product