0000000001012861
AUTHOR
Didier Poilblanc
Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry
We elaborate a simple classification scheme of all rank-5 SU(2)-spin rotational symmetric tensors according to i) the on-site physical spin-$S$, (ii) the local Hilbert space $V^{\otimes 4}$ of the four virtual (composite) spins attached to each site and (iii) the irreducible representations of the $C_{4v}$ point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally-invariant Projected Entangled Pair States (PEPS) with bond dimension $D\leqslant 6$. All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can…
The spin-1/2 Kagome XXZ model in a field: competition between lattice nematic and solid orders
We study numerically the spin-1/2 XXZ model in a field on an infinite Kagome lattice. We use different algorithms based on infinite Projected Entangled Pair States (iPEPS) for this, namely: (i) with simplex tensors and 9-site unit cell, and (ii) coarse-graining three spins in the Kagome lattice and mapping it to a square-lattice model with nearest-neighbor interactions, with usual PEPS tensors, 6- and 12-site unit cells. Similarly to our previous calculation at the SU(2)-symmetric point (Heisenberg Hamiltonian), for any anisotropy from the Ising limit to the XY limit, we also observe the emergence of magnetization plateaus as a function of the magnetic field, at $m_z = \frac{1}{3}$ using 6-…
Spin-S Kagome quantum antiferromagnets in a field with tensor networks
Spin-$S$ Heisenberg quantum antiferromagnets on the Kagome lattice offer, when placed in a magnetic field, a fantastic playground to observe exotic phases of matter with (magnetic analogs of) superfluid, charge, bond or nematic orders, or a coexistence of several of the latter. In this context, we have obtained the (zero temperature) phase diagrams up to $S=2$ directly in the thermodynamic limit thanks to infinite Projected Entangled Pair States (iPEPS), a tensor network numerical tool. We find incompressible phases characterized by a magnetization plateau vs field and stabilized by spontaneous breaking of point group or lattice translation symmetry(ies). The nature of such phases may be se…