Optimization of anemia treatment in hemodialysis patients via reinforcement learning
Objective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDP…
How to assess the risks associated with the usage of a medical device based on predictive modeling: the case of an anemia control model certified as medical device.
Background The successful application of Machine Learning (ML) to many clinical problems can lead to its implementation as medical devices (MD), being important to assess the associated risks. Methods An anemia control model (ACM), certified as MD may face adverse events as the result of wrong predictions that are translated into suggestions of doses of erythropoietic stimulating agents to dialysis patients. Risks are assessed as the combination of severity and probability of a given hazard. While severities are typically assessed by clinicians, probabilities are tightly related to the performance of the predictive model. Results A post-marketing dataset formed by all adult patients registe…