0000000001017703

AUTHOR

M. Jonsson

On the mechanism of radiation synthesis of nanogels

Radiation-engineered poly(N-vinyl pyrrolidone) nanogels are very interesting biocompatible nanocarriers for i.v. administration of therapeutics and contrast agents for bioimaging among other applications. Nanogels are usually produced upon irradiation of dilute aqueous polymer solutions. Under these conditions, the polymer radicals formed primarily react via intramolecular radical-radical combination forming intramolecular crosslinks. The manufacturing process is fast and effective and grants excellent control of particle size and simultaneous sterilization of the formed nanogels. Interestingly, primary amino groups and carboxyl groups, useful for (bio)conjugation, are also formed in a dose…

research product

Gadolinium-chelating nanogels as MR contrast agesnts specifically targeting tumor cells

Development of multifunctional nanogels coordinating paramagnetic ions and displacing targeting ligands for preferential accumulation into tumors. Low molecular-weight Gd-chelates are widely used in clinical MRI for various purposes. However, these contrast agents (CAs) have several shortcomings: they rapidly extravasate from blood vessels to the interstitial space, have a short circulation times and show poor contrast at high magnetic fields. Incorporating gadolinium into flexible nanogels has the potential of increasing intravascular half-life, accumulation and retention in specific body compartments of the CA as well as increasing the MR signal, since many metal ions can be coordinated t…

research product

Radiation engineered polymer nanocarriers for a new generation of nanoparticles based tumor specific radiopharmaceuticals

research product

Gadolinium-chelating nanogels as MR contrast agents specifically targeting tumor cells

Aims and objectives Methods and materials Results Conclusion Personal information References

research product

Radiation Engineering of Multifunctional Nanogels

Nanogels combine the favourable properties of hydrogels with those of colloids. They can be soft and conformable, stimuli-responsive and highly permeable, and can expose a large surface with functional groups for conjugation to small and large molecules, and even macromolecules. They are among the very few systems that can be generated and used as aqueous dispersions. Nanogels are emerging materials for targeted drug delivery and bio-imaging, but they have also shown potential for water purification and in catalysis. The possibility of manufacturing nanogels with a simple process and at relatively low cost is a key criterion for their continued development and successful application. This p…

research product