0000000001019931

AUTHOR

Thibaut Picot

showing 2 related works from this author

The spin-1/2 Kagome XXZ model in a field: competition between lattice nematic and solid orders

2016

We study numerically the spin-1/2 XXZ model in a field on an infinite Kagome lattice. We use different algorithms based on infinite Projected Entangled Pair States (iPEPS) for this, namely: (i) with simplex tensors and 9-site unit cell, and (ii) coarse-graining three spins in the Kagome lattice and mapping it to a square-lattice model with nearest-neighbor interactions, with usual PEPS tensors, 6- and 12-site unit cells. Similarly to our previous calculation at the SU(2)-symmetric point (Heisenberg Hamiltonian), for any anisotropy from the Ising limit to the XY limit, we also observe the emergence of magnetization plateaus as a function of the magnetic field, at $m_z = \frac{1}{3}$ using 6-…

FOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter - Strongly Correlated Electronssymbols.namesakeMagnetizationHigh Energy Physics - LatticeLattice (order)Quantum mechanics0103 physical sciencesTensor010306 general physicsComputingMilieux_MISCELLANEOUSPhysicsQuantum PhysicsSimplexStrongly Correlated Electrons (cond-mat.str-el)Degenerate energy levelsHigh Energy Physics - Lattice (hep-lat)021001 nanoscience & nanotechnologysymbolsIsing modelQuantum spin liquid[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologyHamiltonian (quantum mechanics)Quantum Physics (quant-ph)
researchProduct

Spin-S Kagome quantum antiferromagnets in a field with tensor networks

2016

Spin-$S$ Heisenberg quantum antiferromagnets on the Kagome lattice offer, when placed in a magnetic field, a fantastic playground to observe exotic phases of matter with (magnetic analogs of) superfluid, charge, bond or nematic orders, or a coexistence of several of the latter. In this context, we have obtained the (zero temperature) phase diagrams up to $S=2$ directly in the thermodynamic limit thanks to infinite Projected Entangled Pair States (iPEPS), a tensor network numerical tool. We find incompressible phases characterized by a magnetization plateau vs field and stabilized by spontaneous breaking of point group or lattice translation symmetry(ies). The nature of such phases may be se…

PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Semiclassical physicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences3. Good healthSuperfluidityMagnetizationCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesThermodynamic limitCondensed Matter::Strongly Correlated ElectronsSymmetry breakingQuantum spin liquid[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]010306 general physics0210 nano-technologyTranslational symmetryComputingMilieux_MISCELLANEOUSPhase diagram
researchProduct