0000000001024277

AUTHOR

Giuseppina Barletta

Elliptic problems with convection terms in Orlicz spaces

Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.

research product

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.

research product

Infinitely many solutions for a class of differential inclusions involving the $p$-biharmonic

The existence of inffinitely many solutions for diffierential inclusions depending on two positive parameters and involving the p- biharmonic operator is established via variational methods.

research product

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

research product

Resonant neumann equations with indefinite linear part

We consider aseminonlinear Neumann problem driven by the $p$-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $\pm \infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.

research product