0000000001024601

AUTHOR

Rita Carmona

0000-0002-9686-473x

Hyperplastic Conotruncal Endocardial Cushions and Transposition of Great Arteries in Perlecan-Null Mice

Perlecan is a heparan-sulfate proteoglycan abundantly expressed in pericellular matrices and basement membranes during development. Inactivation of the perlecan gene in mice is lethal at two developmental stages: around E10 and around birth. We report a high incidence of malformations of the cardiac outflow tract in perlecan-deficient embryos. Complete transposition of great arteries was diagnosed in 11 out of 15 late embryos studied (73%). Three of these 11 embryos also showed malformations of semilunar valves. Mesenchymal cells in the outflow tract were abnormally abundant in mutant embryos by E9.5, when the endocardial-mesenchymal transformation starts in wild-type embryos. At E10.5, mut…

research product

Development of the coronary arteries in a murine model of transposition of great arteries.

Transposition of great arteries in humans is associated with a wide spectrum of coronary artery patterns. However, no information is available about how this pattern diversity develops. We have studied the development of the coronary arteries in mouse embryos with a targeted mutation of perlecan, a mutation that leads to ventriculo-arterial discordance and complete transposition in about 70% of the embryos. The perlecan-deficient embryos bearing complete transposition showed a coronary artery pattern consisting of right and left coronary arteries arising from the morphologically dorsal and ventral sinuses of Valsalva, respectively. The left coronary artery gives rise to a large septal arter…

research product

Developmental and tumoral vascularization is regulated by G protein-coupled receptor kinase 2

Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein–coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs isolated from these animals displayed intrinsic alterations in migration, TGF-β signaling, and formation of tubular networks. Remarkably, an altered pattern of vessel growth and maturation was detected in postnatal retinas from endothelium-specific Grk2 knockout animals. Mouse embryos with systemic or endothelium-selective Grk2 ablation …

research product