0000000001024614

AUTHOR

Lisa Hartung

showing 3 related works from this author

From $1$ to $6$: a finer analysis of perturbed branching Brownian motion

2020

The logarithmic correction for the order of the maximum for two-speed branching Brownian motion changes discontinuously when approaching slopes $\sigma_1^2=\sigma_2^2=1$ which corresponds to standard branching Brownian motion. In this article we study this transition more closely by choosing $\sigma_1^2=1\pm t^{-\alpha}$ and $\sigma_2^2=1\pm t^{-\alpha}$. We show that the logarithmic correction for the order of the maximum now smoothly interpolates between the correction in the iid case $\frac{1}{2\sqrt 2}\ln(t),\;\frac{3}{2\sqrt 2}\ln(t)$ and $\frac{6}{2\sqrt 2}\ln(t)$ when $0<\alpha<\frac{1}{2}$. This is due to the localisation of extremal particles at the time of speed change which depen…

LogarithmApplied MathematicsGeneral MathematicsProbability (math.PR)010102 general mathematicsSigmaOrder (ring theory)Branching (polymer chemistry)01 natural sciences010104 statistics & probability60J80 60G70 82B44FOS: Mathematics0101 mathematicsBrownian motionMathematics - ProbabilityMathematicsMathematical physics
researchProduct

Dynamic Phase Diagram of the REM

2019

International audience; By studying the two-time overlap correlation function, we give a comprehensive analysis of the phase diagram of the Random Hopping Dynamics of the Random Energy Model (REM) on time-scales that are exponential in the volume. These results are derived from the convergence properties of the clock process associated to the dynamics and fine properties of the simple random walk in the $n$-dimensional discrete cube.

Physicsrandom environmentsspin glassesRandom energy model010102 general mathematicsagingrandom dynamicsSimple random sample01 natural sciencesLévy processclock processExponential function[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityCorrelation functionLévy processesConvergence (routing)Statistical physics0101 mathematicsCube[MATH]Mathematics [math]Phase diagram
researchProduct

Maxima of a Random Model of the Riemann Zeta Function over Intervals of Varying Length

2021

We consider a model of the Riemann zeta function on the critical axis and study its maximum over intervals of length $(\log T)^{\theta}$, where $\theta$ is either fixed or tends to zero at a suitable rate. It is shown that the deterministic level of the maximum interpolates smoothly between the ones of log-correlated variables and of i.i.d. random variables, exhibiting a smooth transition 'from $\frac34$ to $\frac14$' in the second order. This provides a natural context where extreme value statistics of log-correlated variables with time-dependent variance and rate occur. A key ingredient of the proof is a precise upper tail tightness estimate for the maximum of the model on intervals of si…

Mathematics - Number TheoryProbability (math.PR)FOS: MathematicsNumber Theory (math.NT)60G70 11M06Mathematics - Probability
researchProduct