0000000001026468
AUTHOR
Tat-seng Chua
Cross-Social Network Collaborative Recommendation
Online social networks have become an essential part of our daily life, and an increasing number of users are using multiple online social networks simultaneously. We hypothesize that the integration of data from multiple social networks could boost the performance of recommender systems. In our study, we perform cross-social network collaborative recommendation and show that fusing multi-source data enables us to achieve higher recommendation performance as compared to various single-source baselines.
Neural Multimodal Belief Tracker with Adaptive Attention for Dialogue Systems
Multimodal dialogue systems are attracting increasing attention with a more natural and informative way for human-computer interaction. As one of its core components, the belief tracker estimates the user's goal at each step of the dialogue and provides a direct way to validate the ability of dialogue understanding. However, existing studies on belief trackers are largely limited to textual modality, which cannot be easily extended to capture the rich semantics in multimodal systems such as those with product images. For example, in fashion domain, the visual appearance of clothes play a crucial role in understanding the user's intention. In this case, the existing belief trackers may fail …