Information potential for some probability density functions
Abstract This paper is related to the information theoretic learning methodology, whose goal is to quantify global scalar descriptors (e.g., entropy) of a given probability density function (PDF). In this context, the core concept is the information potential (IP) S [ s ] ( x ) : = ∫ R p s ( t , x ) d t , s > 0 of a PDF p(t, x) depending on a parameter x; it is naturally related to the Renyi and Tsallis entropies. We present several such PDF, viewed also as kernels of integral operators, for which a precise relation exists between S[2](x) and the variance Var[p(t, x)]. For these PDF we determine explicitly the IP and the Shannon entropy. As an application to Information Theoretic Learning w…