0000000001029714

AUTHOR

F. De Rosa

Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy is performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with literature experimental data show that the proposed dry deposition scheme allows to capture the main phenomena involved in the dry deposition process…

research product

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code

The present paper deals with the investigation of the evolution and consequences of a Station Black-Out (SBO) initiating event transient in the SPES3 facility [1]. This facility is an integral simulator of a small modular reactor being built at the SIET laboratories, in the framework of the R&D program on nuclear fission funded by the Italian Ministry of Economic Development and led by ENEA. The SBO transient will be simulated by using the RELAP5 and TRACE nodalizations of the SPES3 facility. Moreover, the analysis will contribute to study the differences on the code predictions considering the different modelling approach with one and/or three-dimensional components and to compare the capa…

research product

Analyses of the TRACE V5 capability for the simulation of natural circulation and primary/containment coupling in BDBA condition typical of the MASLWR

In the short term period the use of advanced Small Modular Reactor (SMR) is one of the most promising options for the deployment of nuclear technology. The validation and assessment of the best estimate thermal hydraulic system code TRACE against SMR thermal hydraulic phenomena is a novel effort. In this framework the use of the natural circulation database developed at the OSU-MASLWR test facility, simulating the MASLWR reactor prototype, is of interest for analyses of the TRACE code capability in predicting natural circulation and primary/containment coupled behavior in SMR. The target of this paper is to analyze the TRACE V5 capability for the simulation of natural circulation phenomena,…

research product