Commutators of linear and bilinear Hilbert transforms
Let α ∈ R \alpha \in \mathbb {R} , and let H α ( f , g ) ( x ) = 1 π p . v . ∫ f ( x − t ) g ( x − α t ) d t t H_\alpha (f,g)(x)=\frac {1}{\pi } p.v. \int f(x-t)g(x-\alpha t)\frac {dt}{t} and H f ( x ) = 1 π p . v . ∫ f ( x − t ) d t t Hf(x)= \frac {1}{\pi } p.v.\int f(x-t)\frac {dt}{t} denote the bilinear and linear Hilbert transforms, respectively. It is proved that, for 1 > p > ∞ 1>p>\infty and α 1 ≠ α 2 \alpha _1\ne \alpha _2 , H α 1 − H α 2 H_{\alpha _1}-H_{\alpha _2} maps L p × B M O L^p\times BMO into L p L^{p} and it maps B M O × L p BMO \times L^p into L p L^{p} if and only if sign ( α 1 ) = sign ( α 2 ) \operatorname {sign}(\alpha _1)=\operatorname {sign}(\alpha _2…