0000000001033794
AUTHOR
Danial J. Armaghani
Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques
In this study, a model for the estimation of the compressive strength of concretes incorporating metakaolin is developed and parametrically evaluated, using soft computing techniques. Metakaolin is a component extensively employed in recent decades as a means to reduce the requirement for cement in concrete. For the proposed models, six parameters are accounted for as input data. These are the age at testing, the metakaolin percentage in relation to the total binder, the water-to-binder ratio, the percentage of superplasticizer, the binder to sand ratio and the coarse to fine aggregate ratio. For training and verification of the developed models a database of 867 experimental specimens has …
Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices
We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphoc…